Evolución de episodios pluviométricos en la Demarcación Hidrográfica del Júcar (1989-2016): del recurso al riesgo

  1. Ana M. Camarasa-Belmonte 1
  2. María Rubio Vila 1
  3. Javier Salas Rey 2
  1. 1 Universitat de València
    info

    Universitat de València

    Valencia, España

    ROR https://ror.org/043nxc105

  2. 2 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

Revista:
Investigaciones Geográficas (España)

ISSN: 0213-4691 1989-9890

Año de publicación: 2020

Número: 73

Páginas: 11-29

Tipo: Artículo

DOI: 10.14198/INGEO2020.CBRVSR DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Investigaciones Geográficas (España)

Resumen

Este trabajo aborda la clasificación y evolución diacrónica de los episodios de lluvia (1989-2016) en ambientes mediterráneos, en la Demarcación Hidrográfica del Júcar. En base a datos del SAIH, y siguiendo criterios hidrológicos, se seleccionan 698 episodios, que se caracterizan con indicadores de precipitación acumulada, intensidad y persistencia. Mediante un análisis cluster se identifican tres tipologías (episodios de recurso limitado, de gran recurso a largo plazo y de riesgo) y se analiza su evolución temporal, estableciendo diferencias entre los episodios de interior y de litoral. Los resultados muestran una tendencia hacia el incremento del riesgo en detrimento del recurso en los tres tipos, por descenso de los totales acumulados y aumento de las intensidades. Si bien la frecuencia anual de los eventos crece, la aportación de los de riesgo sube y la de los de recurso baja. Este comportamiento es más acusado en el interior que en la costa. Se apunta, además, un desplazamiento mensual de los tipos de episodios. Los que acumulan grandes totales se están trasladando de octubre a noviembre, donde pueden coincidir con los de riesgo que, a su vez, incrementan su probabilidad de ocurrencia. Esta sinergia entre sucesos copiosos e intensos supone un factor de riesgo añadido.

Información de financiación

Este trabajo ha sido realizado en el marco del proyecto CGL2017-83546-C3-1-R (Subproyecto 1) (financiado por el Ministerio de Ciencia e Innovación y fondos FEDER).

Financiadores

Referencias bibliográficas

  • Alpert, P., Ben-Gai, T., Baharad, A., Benjamini, Y., Diodato, L., Ramis, C., ... y Manes, A. (2002). The paradoxical increase of Mediterranean extreme daily rainfall in spite o decrease in total values. Geophysical Research Letters, 29(10), 1536. https://doi.org/10.1029/2001GL013554
  • Armengot, R. (2002). Las lluvias intensas en la Comunidad Valenciana. Valencia: Ministerio de Medioambiente.
  • Barrera-Escoda, A., Gonçalves, M., Guerreiro, D., Cunillera, J. y Baldasano, J.M. (2014). Projections of temperatura and precipitation extremes in the North Western Mediterranean Basin by dynamical downscaling of climate scenarios at high resolution (1971-2050). Climate Change 122, 567-582. https://doi.org/10.1007/s10584-013-1027-6
  • Bengtsson, L. y Milloti, S. (2010). Extreme storms in Malmö, Sweden. Hydrological Processes, 24, 3462-3475. https://doi.org/10.1002/hyp.7768
  • Blashfield, R. K. (1976). Mixture model test of cluster analysis: accuracy of four aglomerative hierarchical methods. Psychol. Bull., 83, 377-388. https://doi.org/10.1037/0033-2909.83.3.377
  • Borga, M., Stoffel, M., Marchi, L., Marra, F. y Jakob, M. (2014). Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. Journal of Hydrology, 518, 194-205. http://dx.doi.org/10.1016/j.jhydrol.2014.05.022
  • Bracken, L.J. y Croke, J. (2007). The concept of hydrological connectivity and its contribution to understanding runoff-dominated geomorphic system. Hydrological Processes, 21, 1749-1763. https://doi.org/10.1002/hyp.6313
  • Bracken, L.J., Cox, N.J. y Shannon, J. (2008). The relationship between rainfall inputs and flood generation in south-east Spain. Hydrological Processes, 22, 683-696. https://doi.org/10.1002/hyp.6641
  • Bracken, L.J., Wainwright, J., Ali, G.A., Tetzlaff, D., Smith, M.W., Reaney, S.M. y Rou, A.G. (2013). Concepts of hydrological connectivity: Research approaches, pathways and future agendas. Earth-Science Reviews, 119, 17-34. https://doi.org/10.1016/j.earscirev.2013.02.001
  • Brakenridge, G.R. (1988). River flood regimen and floodplain stratigrafy. Floods Geomorphology, 139-155.
  • Butzer, K. W. (2005). Environmental history in the Mediterranean world: cross-disciplinary investigation of cause-and-effect for degradation and soil erosion. Journal of Archaeological Science, 32, 1773-1800. https://doi.org/10.1016/j.jas.2005.06.001
  • Camarasa-Belmonte, A.M. y López-García, M.J. (2006). Criterios de selección y caracterización de episodios de lluvia. Aplicación a la Confederación Hidrográfica del Júcar (1989-2003). En Publicaciones AEC, Clima, Sociedad y Medio Ambiente, Serie A, 5, 323-336.
  • Camarasa-Belmonte, A.M. y Soriano, J. (2015). La intensidad de lluvia en entornos mediterráneos. Valores extremos según la escala de observación. Boletín de la Asociación de Geógrafos Españoles, 68, 249-300.
  • Camarasa-Belmonte, A. M. (2016). Flash floods in Mediterranean ephemeral streams in Valencia Region (Spain). Journal of Hydrology, 541(Part A), 99-115. https://doi.org/10.1016/j.jhydrol.2016.03.019
  • Cammeraat, E. (2004). Scale dependent thresholds in hydrological and erosion response of a semi-arid catchment in southeast Spain. Agriculture, Ecosystems and Environment, 104, 317-332. https://doi.org/10.1016/j.agee.2004.01.032
  • Conesa, C. (2005). Les ‘ramblas’ du Sud-est Espagnol: Systèmes hkydromorphologiques en milieu méditerranéen sec. Zeitschrift für Geomorphologie, 49, 205-224
  • Cudennec, C., Leduc y C., Koutsoyiannis, D. (2007). Dryland hydrology in Mediterranean regions –a review. Hydrological Sciences Journal, 52(6), 1077-1087. https://doi.org/10.1623/hysj.52.6.1077
  • De Castro, M., Martín-Vide, J. y Alonso, S. (2005). El clima de España: pasado, presente y escenarios de clima para el siglo XXI. En Impactos del cambio climático en España (pp. 1-64). Madrid: Ministerio de Medio Ambiente.
  • De Luis, M., Brunetti, M., Gonzalez-Hidalgo, J.C., Alberto-Longares, L. y Martín-Vide, J. (2010). Changes in seasonal precipitationin the Iberian Peninsula during 1946-2005. Global and Planetary Change, 74, 27-33. https://doi.org/10.1016/j.gloplacha.2010.06.006
  • Estrela, M.J., Miró, J.J. y Millán, M. (2006). Análisis de la tendencia de la precipitación por situaciones convectivas de la Comunidad Valenciana (1959-2004). Clima, Sociedad y Medio Ambiente, Publicaciones AEC, Serie A, 5, 125-136.
  • Estrela, T., Pérez-Martín, M.A. y Vargas, E. (2012). Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57(6), 1154-1167. https://doi.org/10.1080/02626667.2012.702213
  • Estrela, M.J., Piró, J.J. y Gómez, I. (2016). Clima y cambio climático en la Comunidad Valenciana. El Territorio Valenciano. Transformaciones ambientales y antrópicas, 25-28.
  • European Environment Agency (2018). Heavy precipitation, Climate Change Adaptation. Water and Marine Environments.https://www.eea.europa.eu/data-and-maps/indicators/precipitation-extremes-in-europe-3/assessment
  • González-Herrero, S. y Bech, J. (2017). Extreme point rainfall temporal scaling: a long term (1805-2014) regional and seasonal analysis in Spain. International Journal of Climatology, 37(15), 5068-5079. https://doi.org/10.1002/joc.5144
  • Graf, W.L. (1988). Fluvial processes in dryland rivers. Berlin: Springer.
  • Halkidi, M., Batistakis, Y. y Vazirgiannis, M. (2001). On clustering validation techniques. Journal of Intelligent Information Systems, 17(2-3), 107-145. https://doi.org/10.1023/A:1012801612483
  • Homar, V., Romero, R., Ramis, C. y Alonso, S. (2002). Numerical study of the October 2000 torrential precipitation event over Spain: analysis of the synoptic-scale stationarity. Annales Geophysicae, 20, 2047-2066. https://doi.org/10.5194/angeo-20-2047-2002
  • Lavee, H., Imeson, A.C. y Sarah, P. (1998). The impact of climate change on geomorphology and desertification along a Mediterranean-arid transect. Land Degradation & Development, 9, 407-422. https://doi.org/10.1002/(SICI)1099-145X(199809/10)9:5<407::AID-LDR302>3.0.CO;2-6
  • Lionello, P., Malanotte-Rizzoli, P. y Boscolo, R. (Eds.) (2006). Mediterranean Climate Variability. Amsterdam: Elsevier.
  • Lionello, P. (2012). The climate of the Mediterranean Region. From the past to the future. Lecce (Italy): Elsevier.
  • Llasat, M.C. (2001). An objetive classificationof rainfall events on the basis of their convective features: application to rainfall intensity in the northeast of Spain. International Journal of Climatology: A Journal of the Royal Meteorological Society, 21(11), 1385-1400. https://doi.org/10.1002/joc.692
  • López-García, M.J. (2015). Recent warming in the Balearic Sea and Spanish Mediterranean coast. Towards and earlier and longer summer. Atmosfera, 28(3), 149-160. https://doi.org/10.20937/ATM.2015.28.03.01Marcos-García, P. y Pulido-Velázquez, M. (2017). Cambio climático y planificación hidrológica: ¿es adecuado asumir un porcentaje único de reducción de aportaciones para la demarcación? Ingeniería del Agua, 21(1), 35-52. https://doi.org/10.4995/ia.2017.6361
  • Martínez-Mena, M., Castillo, V. y Albaladejo, J. (2001). Hydrological and erosional response to natural rainfall in a semi-arid area of South-east Spain. Hydrologial Processes, 15, 557-571. http://dx.doi.org/10.1002/hyp.146
  • Millán, M., Estrela, M.J. y Miró, J.J. (2005). Rainfall components: variability and spatial distribution in a mediterranean área (Valencia Region). Journal of Climate, 18(14), 2682-2705. https://doi.org/10.1175/JCLI3426.1
  • Miró, J.J., Estrela, M.J. y Olcina, J. (2015). Statistical Downscaling and attribution of air temperature change patterns in the Valencia Region (1948-2011). Atmospheric Research, 156, 189-212. https://doi.org/10.1016/j.atmosres.2015.01.003
  • Monjo, R. (2016). Measure of rainfall time structure using the dimensionless n-index. Climate Resesearch, 67, 71-86. https://doi.org/10.3354/cr01359
  • Morrell, J. y Pérez-Cueva, A. (2000). Volúmenes hídricos de las precipitaciones intensas en la Confederación Hidrográfica del Júcar. Cuadernos de Geografía, 67/68, 261-275. https://ojs.uv.es/index.php/CGUV/article/view/14556/13293
  • Muñoz-Díaz, D. y Rodrigo, F.S. (2004). Spatio-temporal patterns of seasonal rainfall in Spain (1912-2000) using cluster and principal component analysis: comparison. Annales Geophysicae, 22, 1435-1448. https://doi.org/10.5194/angeo-22-1435-2004
  • Olcina, J. (2017). Incremento de episodios de inundación por lluvias de intensidad horaria en el sector central del litoral mediterráneo español: análisis de tendencias en Alicante SÉMATA, Ciencias Socias e Humanidades, 29, 143-163. http://hdl.handle.net/10045/73413
  • Paeth, H., Vogt, G., Paxian, A., Hertig, E., Seubert, S. y Jacobeit, J. (2017). Quantifying the evidence of climate change in the light of uncertainty exemplified by the Mediterranean hot spot region. Global and Planetary Change, 151, 144-151. http://dx.doi.org/10.1016/j.gloplacha.2016.03.003
  • Papalexiou, S.M. y Montanari, A. (2019). Global and regional increase of precipitation extremes under global warming. Water Resources Research, 55, 4901-4914. http://dx.doi.org/10.1029/2018WR024067
  • Pastor, F., Valiente, J.A., Estrela, M.J. (2015). Sea Surface temperature and torrential rains in the Valencia region: modelling the role of recharge areas. Natural Hazards Earth System Science Discussion, 3, 1357-1396.
  • Ramos, M.C. (2001). Divisive and hierarchical clustering techniques to analyse variability of rainfall distribution patterns in a Mediterranean region. Atmospheric Research, 57(2), 123-138. https://doi.org/10.1016/S0169-8095(01)00065-5
  • Romera, R., Gaertner, M.A, Sánchez, E., Domínguez, M., González-Alemán, J.J. y Miglietta, M.M. (2017). Climate change projections of medicanes with a large multi-model ensemble of regional climate models. Global and Planetary Change, 151, 134-143. http://dx.doi.org/10.1016/j.gloplacha.2016.10.008
  • Ruti, P.M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A., ... y Vervatis, V. (2016). Med-CORDEX Initiative for Mediterranean Climate Studies. Bulletin of the American Meteorological Society, 97, 1187-1208. https://doi.org/10.1175/BAMS-D-14-00176.1
  • Samuels, R., Rimmer, A. y Alpert, P. (2009). Effect of extreme rainfall events on the water resources of the Jordan River. Journal of Hydrology, 375, 513-523. https://doi.org/10.1016/j.jhydrol.2009.07.001
  • Ward, J.H. (1963). Hierarchical grouping to optimise and objetive function. Journal of the American statistical association, 58, 236-244. https://doi.org/10.1080/01621459.1963.10500845
  • Westra, S., Fowler, V.J., Evans, P., Alexander, L.V., Berg, P., Johnson, F., ... y Roberts, N. M. (2014). Future changes to the intensity and frequency of short-duration extreme rainfall. Reviews of Geophysics, 52, 3, 522-555. https://doi.org/10.1002/2014RG000464
  • Wolman, M.G. y Gerson, R. (1978). Relative scales of time and effectiveness of climate in watershed geomorphology. Earth Surface Processes, 3, 189-208. https://doi.org/10.1002/esp.3290030207
  • Xoplaki, E., Trigo, R.M., García-Herrera, R., Barriopedro, D., D’Andrea, F., Fischer, E.M., ... y Ziv, B. (2012). Large-Scale Atmospheric Circulation Driving Extreme Climate Events in the Mediterranean and its Related Impacts. In P. Lionello (Ed.), The Climate of the Mediterranean Region (pp. 347-417). https://doi.org/10.1016/B978-0-12-416042-2.00006-9
  • Yair, A. y Kossovosky, A. (2002). Climate and surface properties: hydrological response of small arid and semi-arid watersheds. Geomorphology, 42, 43-57. https://doi.org/10.1016/S0169-555X(01)00072-1
  • Yair, A. y Raz-Yassif, N. (2004). Hydrological processes in a small arid catchment: scale effects of rainfall and slope length. Geomorphology, 61, 155-169. https://doi.org/10.1016/j.geomorph.2003.12.003