Assessment of the discrimination ability of MERIS spectral data for burned area mapping using ROC curves

  1. Oliva Pavón, P.
  2. Chuvieco Salinero, E.
Revista:
Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

ISSN: 1578-5157

Año de publicación: 2013

Título del ejemplar: “In Memoriam: Sergio Opazo Saldivia”

Número: 13

Tipo: Artículo

Otras publicaciones en: Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

Resumen

Traditionally, the selection of the most appropriate bands to classify the target cover was supported by statistical indices that measured the discrimination ability of the spectral bands based on the Gaussian distribution assumption. However, that assumption might not be fulfilled in every instance. In this study we applied a non-parametric test (receiver operating characteristic, ROC) to measure the discrimination ability of MERIS sensor spectral bands and derived spectral indices to classify burned areas. The discrimination potential of each band was computed from the post-fire image, and from the temporal difference of the images. In both cases, the sources of confusion between burned areas and other covers were identified. The bands with higher discrimination ability were the NIR bands and the best indices were η, GEMI, BAI, α B8, α B10, DGEMI and DBAI.

Referencias bibliográficas

  • Bézy, J. L., S. Delwart, et al. (2000): "MERIS - A new generation of ocean-color sensor onboard Envisat", ESA Bulletin, 103, pp. 48-56.
  • Chuvieco, E. (2002): Teledetección ambiental: La observación de la Tierra desde el espacio. Barcelona, Ariel Ciencia.
  • Chuvieco, E., P. Englefield, et al. (2008a): "Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data", Remote Sensing of Environment, 112, pp. 2381-2396.
  • Chuvieco, E., M. P. Martín, et al. (2002): "Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination", International Journal of Remote Sensing, 23, 23, pp. 5103-5110.
  • Chuvieco, E., S. Opazo, et al. (2008b): "Global burned-land estimation in Latin America using MODIS composite data", Ecological Applications, 18, 1, pp. 64-79.
  • Chuvieco, E., S. Opazo, et al. (2008c): "Global burned land estimation in Latin America using MODIS composite data", Ecological Applications, 18, 1, pp. 64-79.
  • Clark, R. N. and T. L. Roush (1984): "Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications," Journal of Geophysical Research, 89, pp. 6329-6340.
  • Curran, P. J., J. L. Dungan, et al. (2001): "Estimating the foliar biochemical concentration of leaves with reflectance spectrometry-testing the Kolaly and Clark methodologies", Remote Sensing of Environment, 76, pp. 349-359.
  • De Santis, A. and E. Chuvieco (2008): "Comparative analysis of different Satellite-Borne sensors to map burn severity in the Riba de Saelices (Guadalajara) fire", Revista de Teledeteccion, 29, pp. 25-37.
  • Debba, P., F. J. A. van Ruitenbeek, et al. (2005): "Optimal field sampling for targeting minerals using hyperspectral data", Remote Sensing of Environment, 99, pp. 373-386.
  • Eva, H. and E. F. Lambin (1998a): "Burned area mapping in Central Africa using ATSR data", International Journal of Remote Sensing, 19, pp. 3473-3497.
  • Fawcett, T. (2006): "An introduction to ROC analysis", Pattern Recognition Letters, 27, pp. 861-874.
  • Garcia, M. and E. Chuvieco (2004): "Assessment of the potential of SAC-C/MMRS imagery for mapping burned areas in Spain", Remote Sensing of Environment, 92, pp. 414–423.
  • Giglio, L., J. Descloitres, et al. (2003): "An Enhanced Contextual Fire Detection Algorithm for MODIS", Remote Sensing of Environment, 87, 2-3, pp. 273-282.
  • Giglio, L., T. Loboda, et al. (2009): "An active-fire based burned area mapping algorithm for the MODIS sensor", Remote Sensing of Environment, 113, pp. 408-420.
  • Gonzalez-Alonso, F., S. Merino de Miguel, et al. (2007): "MERIS full resolution data for mapping level-of-damage caused by forest fires: the Valencia de Alcántara event in August 2003", International Journal of Remote Sensing, 28, 3-4, pp. 797-809.
  • González-Alonso, F., V. Salgado, et al. (2009): "Forest burn in China by means of MERIS and MODIS images", Dragon 2 Symposium, Barcelona (Spain).
  • Guanter, L., L. Gómez-Chova, et al. (2008): "Coupled retrieval of aerosol optical thickness, columnar water vapor and surface reflectance maps from ENVISAT/MERIS data over land", Remote Sensing of Environment, 112, pp. 2898-2913.
  • Holden, Z. A., A. M. S. Smith, et al. (2005): "Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data", International Journal of Remote Sensing, 26, 21, pp. 4801-4808.
  • Huang, Z., B. J. Turner, et al. (2004): "Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis", Remote Sensing of Environment, 93, pp. 18-29.
  • Kailath, T. (1967): "The divergence and Bhattacharyya distance measures in signal selection", IEEE Transactions on Communication Technology, 15, 1, pp. 52-60.
  • Kaufman, Y. J. and L. A. Remer (1994): "Detection of forests using Mid-IR reflectance: an application for aerosol studies", IEEE Transactions on Geoscience and Remote Sensing, 32, 3, pp. 672-683.
  • Khanna, S., A. Palacios-Orueta, et al. (2007): "Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination", Remote Sensing of Environment, 109, pp. 154-165.
  • Koutsias, N. and M. Karteris (1998): "Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping", International Journal of Remote Sensing, 19, 18, pp. 3499-3514.
  • Koutsias, N. and M. Karteris (2000): "Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image", International Journal of Remote Sensing, 21, 4, pp. 673-687.
  • Kucera, J. and Y. Yoshifumi (2001): "Regional monitoring of forest disturbances and their potential effects to carbon cycling", 22nd Asian Conference on Remote Sensing, Singapure, Centre for Remote Imaging, Sensing and Processing (CRISP), Asian Association on Remote Sensing (AARS).
  • Kumar, R. and L. F. Silva (1977): "Separability of agricultural cover types by remote sensing in the visible and infrared wavelength regions", IEEE Transactions on Geoscience Electronics, 15, 1, pp. 8.
  • López García, M. J. and V. Caselles (1991): "Mapping burns and natural reforestation using Thematic Mapper data", Geocarto International, 1, pp. 31-37.
  • Maggi, M. and D. Stroppiana (2002): "Advantages and drawbacks of NOAA-AVHRR and SPOT-VGT for burnt area mapping in a tropical savanna ecosystem", Canadian Journal of Remote Sensing, 28, 2, pp. 231-245.
  • Martín, M. P. (1998): "Cartografía e inventario de incendios forestales en la península Ibérica a partir de imágenes NOAA-AVHRR", Univ. of Alcalá.
  • Mutanga, O., A. K. Skidmore, et al. (2004): "Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features", Remote Sensing of Environment, 89, pp. 393-408.
  • Oliva, P., M. P. Martín, et al. (2011): "Burned area mapping with MERIS post-fire image", International Journal of Remote Sensing, 32, 15, pp. 26.
  • Oliva, P. and P. Martin (2007): "Mapping burned area by using Spectral Angle Mapper in MERIS images", 6th International workshop on remote Sensing and GIS Applications to Forest Fire Management: Fire Effects Assessment, Thessaloniki, Greece, Aristotele University of Thessaloniki.
  • Pereira, J. M. C. (1999): "A comparative evaluation of NOAA/AVHRR vegetation indexes for burned surface detection and mapping", IEEE Transactions on Geoscience and Remote Sensing, 37, 1, pp. 217-226.
  • Pinty, B. and M. M. Verstraete (1992): "GEMI:a non-linear index to monitor global vegetation from satellites", Vegetatio, 101, pp. 15-20.
  • Pyne, S. J., P. L. Andrews, et al. (1996): Introdution to Wildland fire.Jonh Wiley & Sons, Inc.
  • Richards, J. A. (1984): "Thematic mapping from multitemporal image data using the Principal Components Transformation", Remote Sensing of Environment, 16, pp. 35-46.
  • Roldán-Zamarrón, A., S. Merino de Miguel, et al. (2006): "Minas de Rio Tinto (south Spain) forest fire: Burned area assessment and fire severity mapping using Landsat 5-TM, Envisat-MERIS, and Terra-MODIS postfire images", Journal of Geophysical Research, 111, G04S11.
  • Roy, D. P., Y. Jin, et al. (2005): "Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data", Remote Sensing of Environment, 97, pp. 137-162.
  • Roy, D. P. and T. Landmann (2005): "Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelength data", International Journal of Remote Sensing, 26, 19, pp. 4197-4218.
  • Silva, J. M. N., J. F. C. L. Cadima, et al. (2004): "Assessing the feasibility of a global model for multi-temporal burned area mapping using SPOT-VEGETATION", International Journal of Remote Sensing, 25, 22, pp. 4889-4913.
  • Smith, A. M. S., N. A. Drake, et al. (2007): "Production of Landsat ETM+ reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS", International Journal of Remote Sensing, 28, 12, pp. 2753-2775.
  • Stroppiana, D., S. Pinnick, et al. (2002): "Radiometric analysis of SPOT-VEGETATION images for burnt area detection in Northern Australia", Remote Sensing of Environment, 82, pp. 21-37.
  • Swets, J. A., R. M. Dawes, et al. (2000): "Better decisions through science", Scientific American, 283, pp. 82-87.
  • Tansey, K., J. M. Grégoire, et al. (2008): "A new, global, multi-annual (2000-2007) burnt area product at 1 km resolution", Geophysical Research Letters, 35, L01401, pp. 6.
  • Trigg, S. and S. Flasse (2000): "Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry", International Journal of Remote Sensing, 21, 16, pp. 3161-3168.
  • Trigg, S. and S. Flasse (2001): "An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah", International Journal of Remote Sensing, 22, 13, pp. 2641–2647.
  • van der Meer, F. D. (2000): "Spectral curve shape matching with a continuum removed CCSM algorithm", International Journal of Remote Sensing, 21, 16, pp. 3179-3185.
  • van der Werf, G. R., J. T. Randerson, et al. (2010): "Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009)", Atmospheric Chemistry and Physics, 10, pp. 11707-11735.
  • Veraverbeke, S., S. Harris, et al. (2011): "Evaluating spectral indices for burned area discrimination using MODIS/ASTER (MASTER) airborne simulator data", Remote Sensing of Environment, 115, 10, pp. 2702-2709.
  • Viedma, O., J. M. Moreno, et al. (2006): "Interactions between land use/land cover change, forest fires and landscape structure in Sierra de Gredos (Central Spain)", Environmental Conservation, 33, 3, pp. 212-222.
  • Zarco-Tejada, P. J., J. D. Miller, et al. (2004): "Needle chlorophyll content estimation through model inversion using hyperspectral data from boreal conifer forest canopies", Remote Sensing of Environment, 89, pp. 189-199.
  • Zarco-Tejada, P. J. and J. R. Miller (1999): "Land cover mapping at BOREAS using red edge spectral parameters from CASI imagery", Journal of Geophysical Research, 104, 22, pp. 27.921-927.933.