Análisis del régimen de incendios forestales y su relación con los cambios de uso del suelo en la Comunidad Autónoma de Madrid (1989-2010)

  1. Gómez Nieto, Israel 1
  2. Martín Isabel, María del Pilar 2
  3. Salas Rey, Francisco Javier 3
  1. 1 Instituto de Geociencias, Consejo Superior de Investigaciones Científicas
  2. 2 Instituto de Economía, Geografía y Demografía, Centro de Ciencias Humanas y Sociales, Consejo Superior de Investigaciones Científicas
  3. 3 Departamento de Geología, Geografía y Medio Ambiente, Universidad de Alcalá
Revista:
Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

ISSN: 1578-5157

Año de publicación: 2015

Número: 16

Tipo: Artículo

Otras publicaciones en: Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

Resumen

En este artículo se analizan los incendios forestales ocurridos en la Comunidad Autónoma de Madrid en dos períodos, 1989-1995 y 2007-2010, con el objetivo de caracterizar y comparar el régimen de incendios en cada uno de ellos, así como la acción selectiva del fuego en relación con los usos del suelo. Los datos de incendios se generaron a partir de imágenes Landsat (TM/ETM+) mientras que la información sobre usos del suelo se obtuvo de los mapas CORINE Land Cover (1990 y 2006). El régimen de incendios fue definido a través de siete indicadores. Los resultados mostraron una clara reducción de la incidencia de incendios con un 16% menos de incendios y un 78% menos de superficie quemada en el segundo período respecto al primero. El análisis del carácter selectivo del fuego sobre los usos del suelo se basó en el cociente de selección de Manly. En el período 1989-1995 destacó una mayor incidencia en bosques de coníferas y, en menor medida, en matorrales. En el período 2007-2010, la incidencia fue mayor en las zonas de pastos. El análisis mostró el importante papel de la interfaz entre usos artificiales y forestales en la ocurrencia de incendios, especialmente en el período 2007-2010.

Referencias bibliográficas

  • Agee, J. (1997): “The severe weather wildfire - too hot to handle”. Northwest Science Forum, 71, 153–156.
  • Anderson, H.E. (1982): “Aids to determining fuel models for estimating fire behavior”. USDA forest service general technical report, INT-122, Intermountain forest and range experiment station, Ogden, UT, 22.
  • Angelis, A.D.; Bajocco, S. y Ricotta, C. (2012): “Phenological variability drives the distribution of wildfires in Sardinia”. Landscape Ecology, 27, 1535-1545.
  • Bajocco S. y Ricotta C (2008): “Evidence of selective burning in Sardinia (Italy): which land-cover classes do wildfires prefer?”. Landscape Ecology 23, 241–248.
  • Barbosa, P.M.; Kucera, J.; Strobl, P.; Camia, A.; Amatulli, G. y San-Miguel, J. (2007): “European Forest Fire Information System (EFFIS). Rapid Damage Assessment: appraisal of burnt area maps in southern Europe using MODIS data (2003 to 2006)”, IV Conferencia Internacional sobre incendios forestales, Sevilla, España.
  • Barros, A.M.G. y Pereira, J.M.C. (2014): “Wildfire Selectivity for Land Cover Type: Does Size Matter?”. Plos One, 9, 1, e84760.
  • Bond, W. y Keeley, J. (2005): “Fire as a global ‘‘herbivore’’: the ecology and evolution of flammable ecosystems”. Trends in Ecology and Evolution, 20, 387–395.
  • Burgan, R.E.; Klaver, R.W. y Klaver, J.M. (1998): “Fuel models and fire potential from satellite and surface observations”. International Journal of Wildland Fire, 8, 159–170.
  • Carmo, M.; Moreira, F.; Casimiro, P. y Vaz, P. (2011): “Land use and topography influences on wildfire occurrence in northern Portugal”. Landscape and Urban Planning, 100, 169–176.
  • Carmona-Moreno, C.; Belward, A.; Malingreau, J.P.; Hartley A.; Garcia-Alegre, M.; Antonovskiy, M.; Buchshtaber, V. y Pivovarov, V. (2005): “Characterizing interannual variations in global fire calendar using data from Earth observing satellites”. Global Change Biology, 11, 1537–1555.
  • Catalá Mateo, R.; Bosque Sendra, J. y Plata Rocha, W. (2008): “Análisis de posibles errores en la base de datos CORINE Land Cover (1990-2000) en la Comunidad de Madrid”. Estudios Geográficos, LXXIX, 264, 81-104.
  • Conedera, M.; Torriani, D.; Neff, C.; Ricotta, C.; Bajocco, S. y Pezzatti, G.B. (2011): “Using Monte Carlo simulations to estimate relative fire ignition danger in a low-to-medium fire-prone region”. Forest Ecology and Management, 261, 2179-2187.
  • Chuvieco, E.; Giglio, L. y Justice, C. (2008): “Global characterization of fire activity: toward defining fire regimes from Earth observation data”. Global Change Biology, 14, 1488–1502.
  • Decreto 58/2009, de 4 de junio, del Consejo de Gobierno, por el que se aprueba el Plan de Protección Civil de Emergencia por Incendios Forestales en la Comunidad de Madrid (INFOMA), (BOCM, 12 de junio de 2009).
  • Deliverable D1.1.3 Tool for RUI mapping (2011). FUME Project (Grant agreement nº 243888). Seventh Framework Programme Theme ENV 1.3.1.1
  • Giglio, L.; Csiszar, I. y Justice, C.O. (2006): Global distribution and seasonality of active fires observed with the Terra and Aqua moderate resolution imaging spectroradiometer (MODIS) sensors. Journal of Geophysical Research, 111, G02016.
  • Gil, A.M. (1975): “Fire and the Australian flora: a review”. Australian Forestry, 38, 1, 4-25.
  • Hairston, N.G.; Smith, F.E y Slobodkin, L.B. (1960): “Community structure, population control and Competion”. The American Naturalist, 94, 879, 421-425.
  • Izco, J. (1984): Madrid Verde. Ministerio de Agricultura, Pesca y Alimentación.
  • Keeley, J. y Fotheringham, C. (2001): “Historic fire regime in southern California shrublands”. Conservation Biology, 15, 1252-1262.
  • Keeley, J.; Bond, W.; Bradstock, R.; Pausas, J. y Rundel, P. (2012): “Fire in the Mediterranean Basin. In: Fire in Mediterranean ecosystems”. Ecology, Evolution and Management. New York, Cambridge University Press, 87–91.
  • Krebs, P.; Pezzatti, G.; Mazzoleni, S.; Talbot, L. y Conedera, M. (2010): “Fire regime: history and definition of a key concept in disturbance ecology”. Theory in Biosciences, 129, 53-69.
  • López de Lucio, R. (2003): “Transformaciones territoriales recientes en la región urbana de Madrid”. Urban, 8, 124-161.
  • Lloret, F.; Calvo, E.; Pons, X. y Diaz-Delgado, R. (2002): “Wildfires and landscape patterns in the eastern Iberian Peninsula”. Landscape Ecology, 17, 745–759.
  • Manly, B.; Macdonald, L.; Thomas, D.; Macdonald, T. y Erickson, W. (2010): Resource selection by animals: Statistical design and analysis for field studies. Dordrecht, The Netherlands, Kluwer Academic Publishers.
  • Martínez, J.; Vega-García, C. y Chuvieco, E. (2009): “Human-caused wildfire risk rating for prevention planning in Spain”. Journal of Environmental Management, 90, 1241–1252.
  • Milligton, J.D.A.; Wainwright, J.; Perry, G.L.W.; Romero-Calcerrada, R. y Malamud, B. (2009): “Modelling Mediterranean landscape succession-disturbance dynamics: a landscape fire-succession model”. Environmental Modelling & Software, 24, 10, 1196-1208.
  • Minnich, R.A. (1983): “Fire mosaics in southern California and northern Baja California”. Science, 219, 1287–1294.
  • Minnich, R.A. y Chou, Y.H. (1997): “Wildland fire patch dynamics in the Chaparral of Southern California and Northern Baja California”. International Journal of Wildland Fire, 7, 3, 221–248.
  • Moreira, F.; Rego, F. y Ferreira, P. (2001): “Temporal (1985–1995) pattern of change in a cultural landscape of northwestern Portugal: implications for fire occurrence”. Landscape Ecology, 16, 557–567.
  • Moreno, V. y Chuvieco, E. (2012): “Characterising fire regimes in Spain from fire statistics”. International Journal of Wildland Fire, 22, 296–305.
  • Moritz, M. (2003): “Spatiotemporal analysis of controls on shrubland fire regimes: age dependency and fire hazard”. Ecology, 84, 351–361.
  • Moritz, M.A.; Keeley, J.E.; Johnson, E.A. y Schaffner, A.A. (2004): “Testing a basic assumption of shrubland fire management: How important is fuel age?”. Frontiers in Ecology and the Environment, 2, 65–70.
  • Mouillot, F. y Field, C.B. (2005): “Fire history and the global carbon budget: a 1 degrees x 1 degrees fire history reconstruction for the 20th century”. Global Change Biology, 11, 398–420.
  • Nunes, M.C.S.; Vasconcelos, M.J.; Pereira, J.M.C.; Dasgupta, N.; Alldredge, R.J. y Rego, F.C. (2005): “Land cover type and fire in Portugal: do fires burn land cover selectively?”. Landscape Ecology, 20, 661-673.
  • Oliveira, S.; Moreira, F.; Boca, R.; San-Miguel-Ayanz, J. y Pereira, J.M. (2013): “Assessment of fire selectivity in relation to land cover and topography: a comparison between southern European countries”. International Journal of Wildland Fire, 23, 5, 620-630.
  • Parks, S.; Parisien, M. y Miller, C. (2011): “Multi-scale evaluation of the environmental controls on burn probability in a southern Sierra Nevada landscape”. International Journal of Wildland Fire, 20, 815–828.
  • Pausas, J.G.; Lloret, J.; Rodrigo, A. y Vallejo, R. (2008): “Are wildfires a disaster in the Mediterranean Basin?- a review”. International Journal of Wildland Fire, 17, 6, 713–723.
  • Peinado, M.; Moreno, G. y Bartolomé, C. (1987): “Datos florísticos y ecológicos sobre los abedules del Sistema Central”. Universidad La Laguna, Ser. Informes, 22.
  • Real Decreto Ley 11/2005, de 22 de Julio, por el que se aprueban medidas urgentes en materia de incendios forestales (BOE nº 175, de 23/07/2005).
  • Riaño, D.; Moreno, J.A.; Isidoro, D. y Ustin, S.L. (2007): “Global spatial patterns and temporal trends of burned area between 1981 and 2000 using NOAA–NASA Pathfinder”. Global Change Biology, 13, 40–50.
  • Rodríguez-Rodríguez, D. y Martínez-Vega, J. (2013): “Results of the implementation of the System for the Integrated Assessment of Protected Areas (SIAPA) to the protected areas of the Autonomous Region of Madrid (Spain)”. Ecological Indicators, 34, 210-220.
  • Rodríguez Verdú, F. y Salas Rey, F.J. (2011): "Caracterización de variables biofísicas en los incendios forestales mayores de 25 ha de la España peninsular (1991-2005)". Boletín de la Asociación de Geógrafos Españoles, 57, 79-100.
  • Romero-Calcerrada, R. y Perry, G.L.W. (2004): “The role of land abandonment in landscape dynamics in the SPA ‘Encinares del río Alberche y Cofio, Central Spain, 1984–1999”. Landscape and Urban Planning, 66, 217–232.
  • Romme, W.H. (1982): “Fire and landscape diversity in subalpine forests of Yellowstone National Park”. Ecological Monographs, 52, 199-221.
  • Rothermel, R.C. y Philpot, C.W. (1973): “Fire in wildland management: predicting chages in chaparral flammability”. Journal of Forestry, 71, 164-169.
  • Shannon, C. y Weaver, W. (1949): The mathematical theory of communication. Univ. Illinois Press, Urbana.
  • Sebastián-López, A.; Salvador-Civil, R.; Gonzalo-Jiménez, J. y San-Miguel-Ayanz, J. (2008): “Integration of socio-economic and environmental variables for modelling long-term fire danger in Southern Europe”. European Journal of Forest Research, 127, 2, 149-163.
  • Turner, M.G. y Romme, W.H. (1994): “Landscape dynamics in crown fire ecosystems”. Landscape Ecology, 9, 59–77.
  • Vázquez, A. y Moreno, J.M. (2001): “Spatial distribution of forest fires in Sierra de Gredos (Central Spain)”. Forest Ecology and Management, 147, 55–65.
  • Vázquez de la Cueva, A.; García del Barrio, J.M.; Ortega, M. y Sánchez, O. (2006): “Recent fire regimes in peninsular Spain in relation to forest potential productivity and population density”. International Journal of Wildland Fire, 15, 397–405.
  • Vélez, R. (2000): “Perspectiva histórica de los incendios forestales en España”, en Vélez, R. (Ed.): La Defensa contra Incendios Forestales: Fundamentos y experiencias. Madrid, McGraw Hill, 315-331.
  • Vilar, L.; Woolford, D.G.; Martell, D.L. y Martín, M.P. (2010): “A model for predicting human caused wildfire occurrence in the region of Madrid, Spain”. International Journal of Wildland Fire, 19, 325- 337.
  • Vilar, L.; Martín, M.P. y Martínez, F.J. (2011): “Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data”. European Journal of Forest Research, 130, 983–996.