Componentes celulares y organización tisular del sistema inmune adaptativo

  1. Monserrat Sanz, J.
  2. Paule Peral, L.
  3. Prieto Martín, A.
Revista:
Medicine: Programa de Formación Médica Continuada Acreditado

ISSN: 0304-5412

Año de publicación: 2017

Serie: 12

Número: 24

Páginas: 1379-1387

Tipo: Artículo

DOI: 10.1016/J.MED.2016.12.007 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Medicine: Programa de Formación Médica Continuada Acreditado

Resumen

Resumen Linfocitos B y la médula ósea . Los linfocitos B se originan en la médula ósea, la cual proporciona el entorno celular y molecular esencial para que mediante un complejo proceso de diferenciación independiente de antígeno se forme un linfocito B inmunocompetente. Los linfocitos B sintetizarán sus receptores de antígeno, encargados de reconocer específicamente a los patógenos, mediante la recombinación somática de sus genes. Para asegurar el correcto funcionamiento de estos receptores deberán pasar por dos controles de calidad imprescindibles, demostrar que los receptores son funcionales y que no reconocen estructuras propias, proceso denominado tolerancia central. Linfocitos T y el timo . Los linfocitos T necesitan procesos de diferenciación similares a los linfocitos B. Sin embargo, nacen en el timo a partir de un precursor pluripotencial que proviene de médula ósea. La histología tímica proporciona el entorno para realizar los procesos de tolerancia central y las señales necesarias para generar las distintas subpoblaciones de linfocitos: T-colaboradores, T-citotóxicos, NKT y Tγδ. Órganos linfoides secundarios Los linfocitos maduros liberados por los órganos linfoides primarios a la circulación general se dirigirán a los órganos linfoides secundarios como ganglios linfáticos o bazo donde se producirá el reclutamiento de los antígenos y el inicio de las respuestas inmunes.

Referencias bibliográficas

  • Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010;125(2)Suppl2:S33-S40.
  • Male D, Brostoff J, Roth D, Roitt I. Celulas, téjidos y órganos del sistema inmunitario. Inmunología. 8ª ed. Barcelona: Elsevier; 2014. p. 17-51.
  • Parkin J, Cohen B. An overview of the immune system. Lancet. 2001;357(9270):1777-89.
  • Abbas AK, Lichtman AH, Pillai S. Cells and tissues of immune system. Cellular and molecular immunology. 8th ed. Philadelphia: Elsevier; 2015. p. 15-37.
  • Paul WE. The immune system. 7ª ed. Fundamental immunology. Philadelphia: Lippincott Williams and Wilkins; 2013. p. 571-668.
  • LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood 2008;112(5):1570-80.
  • Milford TA, Su RJ, Francis OL, Baez I, Martínez SR, Coats JS. TSLP or IL-7 provide an IL-7Ralpha signal that is critical for human B lymphopoiesis. Eur J Immunol. 2016;46(9):2155-61.
  • Labrie JE, III, Borghesi L, Gerstein RM. Bone marrow microenvironmental changes in aged mice compromise V(D)J recombinase activity and B cell generation. Semin Immunol. 2005;17(5):347-55.
  • Rolink AG, Schaniel C, Busslinger M, Nutt SL, Melchers F. Fidelity and infidelity in commitment to B-lymphocyte lineage development. Immu-nol Rev. 2000;175:104-11.
  • Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013;131(4):959-71.
  • Tobon GJ, Izquierdo JH, Canas CA. B lymphocytes: development, tolerance, and their role in autoimmunity-focus on systemic lupus erythematosus. Autoimmune Dis. 2013;2013:827254.
  • Fillatreau S. Regulatory roles of B cells in infectious diseases. Clin Exp Rheumatol. 2016;34(4)Suppl98:1-5.
  • Shahaf G, Zisman-Rozen S, Benhamou D, Melamed D, Mehr R. B cell development in the bone marrow is regulated by homeostatic feedback exerted by mature B cells. Front Immunol. 2016;7:77.
  • Suryani S, Tangye SG. Therapeutic implications of advances in our understanding of transitional B-cell development in humans. Expert Rev Clin Immunol. 2010;6(5):765-75.
  • Dorshkind K, Montecino-Rodríguez E. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nat Rev Immunol. 2007;7(3):213-9.
  • Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. 2009;27:199-227.
  • Kaminski DA, Wei C, Rosenberg AF, Lee FE, Sanz I. Multiparameter flow cytometry and bioanalytics for B cell profiling in systemic lupus erythematosus. Methods Mol Biol. 2012;900:109-34.
  • Kaminski DA, Wei C, Qian Y, Rosenberg AF, Sanz I. Advances in human B cell phenotypic profiling. Front Immunol. 2012;3:302.
  • Takahama Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat Rev Immunol. 2006;6(2):127-35.
  • Sultana DA, Bell JJ, Zlotoff DA, De Obaldia ME, Bhandoola A. Eliciting the T cell fate with Notch. Semin Immunol. 2010;22(5):254-60.
  • Takahama Y, Nitta T, Mat RA, Nitta S, Murata S, Tanaka K. Role of thymic cortex-specific self-peptides in positive selection of T cells. SeminImmunol. 2010;22(5):287-93.
  • Fay NS, Larson EC, Jameson JM. Chronic Inflammation and gammadelta T Cells. Front Immunol. 2016;7:210.
  • Lombes A, Durand A, Charvet C, Riviere M, Bonilla N, Auffray C. Adaptive immune like gamma/delta t lymphocytes share many common features with their alpha/beta T cell counterparts. J Immunol. 2015; 195(4):1449-58.
  • Paul S, Singh AK, Shilpi, Lal G. Phenotypic and functional plasticity of gamma-delta (gammadelta) T cells in inflammation and tolerance. Int Rev Immunol. 2014;33(6):537-58.
  • Aliahmad P, Kaye J. Commitment issues: linking positive selection signals and lineage diversification in the thymus. Immunol Rev. 2006;209:253-73.
  • Misslitz A, Bernhardt G, Forster R. Trafficking on serpentines: molecular insight on how maturating T cells find their winding paths in the thymus. Immunol Rev. 2006;209:115-28.
  • Wang L, Xiong Y, Bosselut R. Maintaining CD4-CD8 lineage integrity in T cells: where plasticity serves versatility. Semin Immunol. 2011;23(5): 360-7.
  • Hedrick SM. Thymus lineage commitment: a single switch. Immunity. 2008; 28(3):297-9.
  • Coles M, Veiga-Fernandes H. Insight into lymphoid tissue morphogenesis. Immunol Lett. 2013;156(1-2):46-53.
  • Paul WE. Lymphoid tissues and organs. In: Lippincott Williams & Wilkins, editor. Fundamental Immunology. 7th Edition ed. 2013.
  • Hiraoka N, Ino Y, Yamazaki-Itoh R. Tertiary lymphoid organs in cancer tissues. Front Immunol. 2016;7:244
  • Hjelmstrom P. Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemoki-nes. J Leukoc Biol. 2001;69(3):331-9.
  • Pearson C, Uhlig HH, Powrie F. Lymphoid microenvironments and innate lymphoid cells in the gut. Trends Immunol. 2012;33(6):289-96.
  • Hoorweg K, Cupedo T. Development of human lymph nodes and Peyer’s patches. Semin Immunol. 2008;20(3):164-70.
  • Von Andrian UH, Mempel TR. Homing and cellular traffic in lymph nodes. Nat Rev Immunol. 2003;3(11):867-78.
  • Den Haan JM, Kraal G. Innate immune functions of macrophage subpopulations in the spleen. J Innate Immun. 2012;4(5-6):437-45.
  • Mebius RE, Nolte MA, Kraal G. Development and function of the splenic marginal zone. Crit Rev Immunol. 2004;24(6):449-64.
  • Mebius RE, Kraal G. Structure and function of the spleen. Nat Rev Immunol. 2005;5(8):606-16.
  • Garside P, Millington O, Smith KM. The anatomy of mucosal immune responses. Ann N Y Acad Sci. 2004;1029:9-15.
  • Jung C, Hugot JP, Barreau F. Peyer’s patches: the immune sensors of the intestine. Int J Inflam. 2010;2010:823710.