El papel del nitrógeno orgánico en el desarrollo de mecanismos de resistencia a estrés en especies del género Pinusresultados preliminares

  1. Sigala, J.A. 1
  2. Uscola, M. 2
  3. Oliet, J.A. 3
  1. 1 Grupo de Ecología y Gestión Forestal Sostenible (ECOGESFOR). ETS Ingenieros de Montes Forestal y del Medio Natural. Universidad Politécnica de Madrid ; Campo Experimental Valle del Guadiana. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Durango, México
  2. 2 Forest Ecology and Restoration Group. Departamento de Ciencias de la Vida. Universidad de Alcalá
  3. 3 Grupo de Ecología y Gestión Forestal Sostenible (ECOGESFOR). ETS Ingenieros de Montes Forestaly del Medio Natural. Universidad Politécnica de Madrid
Revista:
Cuadernos de la Sociedad Española de Ciencias Forestales

ISSN: 1575-2410 2386-8368

Año de publicación: 2019

Número: 45

Páginas: 71-86

Tipo: Artículo

DOI: 10.31167/CSECFV0I45.19489 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Cuadernos de la Sociedad Española de Ciencias Forestales

Resumen

Las plantas pueden usar múltiples fuentes de nitrógeno (N), tanto inorgánicas como orgánicas (aminoácidos intactos o proteínas). El bajo coste metabólico del N orgánico podría redundar en un mayor crecimiento o en aumento de tolerancia a factores de estrés, lo que favorecería el éxito de las plantaciones. Sin embargo, su uso de N orgánico en fertilización apenas se ha estudiado y menos el rol que juega en promover resistencia a factores de estrés abiótico en las plantas. Se estudió el efecto de la fertilización con aminoácidos, como fuente de N, sobre el crecimiento y resistencia a estrés por sequía o frío en plantas del género Pinus, ya que son las especies más frecuentemente utilizadas en proyectos de restauración. Los resultados mostraron que el N orgánico fue tan eficiente como las fuentes inorgánicas promoviendo el crecimiento y estado nutricional de las plantas. Si bien a priori, en ausencia de aclimatación, el N orgánico no indicó grandes ventajas en tolerancia a sequía, tras un periodo de aclimatación, en plantas fertilizadas con N orgánico se optimizó la concentración de prolina y pigmentos fotosintéticos. Además, aunque el endurecimiento a frio fue un poco más tardío en las plantas fertilizadas con N orgánico, presentaron mayor y más prolongada tolerancia a heladas en el invierno. Los resultados indican que el N orgánico puede ser usado como una alternativa viable en programas fertilización de los viveros forestales, optimizando las características de resistencia en las plantas sin afectar su calidad morfológica.

Referencias bibliográficas

  • Abraham, E., Hourton-Cabassa, C., Erdei, L., Szabados, L., 2010. Methods for determination of proline in plants. In: Sunkar, R. (ed) Plant Stress Tolerance: Methods and Protocols. Humana Press, Totowa, NJ, pp 317-331. https://doi.org/10.1007/978-1-60761-702-0_20
  • Barnes, J.D., Balaguer, L., Manrique, E., Elvira, S., Davison, A.W., 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85-100. https://doi.org/10.1016/0098-8472(92)90034-Y
  • Britto, D.T., Kronzucker, H.J., 2002. NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159:567-584. https://doi.org/10.1078/0176-1617-0774
  • Britto, D.T., Siddiqi, M.Y., Glass, A.D., Kronzucker, H.J., 2001. Futile transmembrane NH4+ cycling: a cellular hypothesis to explain ammonium toxicity in plants. Proc Natl Acad Sci U S A 98:4255-8. https://doi.org/10.1073/pnas.061034698
  • Delgado-Baquerizo, M., Covelo, F., Gallardo, A., 2011. Dissolved organic nitrogen in Mediterranean ecosystems. Pedosphere 21:309-318. https://doi.org/10.1016/S1002-0160(11)60131-8
  • Dumroese, R.K., Williams, M.I., Stanturf, J.A., Clair ,J.B. St., 2015. Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New For 46:947-964. https://doi.org/10.1007/s11056-015-9504-6
  • Earnshaw, M.J., 1993. Stress indicators: electrolyte leakage. In: Hendry GAF, Grime JP (eds) Methods in comparative plant ecology. A laboratory manual, 1st. Chapman and Hall, London, pp 152-154
  • Fernández-Pérez, L., Villar-Salvador, P., Martínez-Vilalta, J., Toca, A., Zavala, M.A., 2018. Distribution of pines in the Iberian Peninsula agrees with species differences in foliage frost tolerance, not with vulnerability to freezing-induced xylem embolism. Tree Physiol 38:507-516. https://doi.org/10.1093/treephys/tpx171
  • Franklin, O., Cambui, C.A., Gruffman, L., Palmroth, S., Oren, R., Näsholm, T., 2017. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants. Plant Cell Environ 40:25-35. https://doi.org/10.1111/pce.12772
  • Greer, D.H., Robinson, L.A., Hall, A.J., Klages, K., Donnison, H., 2000. Frost hardening of Pinus radiata seedlings: effects of temperature on relative growth rate, carbon balance and carbohydrate concentration. Tree Physiol 20:107-114. https://doi.org/10.1093/treephys/20.2.107
  • Grossnickle, C.S., MacDonald, E.J., 2018. Seedling Quality: History, Application, and Plant Attributes. Forests 9:283. https://doi.org/10.3390/f9050283
  • Gruffman, L., Ishida, T., Nordin, A., Näsholm, T., 2012. Cultivation of Norway spruce and Scots pine on organic nitrogen improves seedling morphology and field performance. For Ecol Manage 276:118-124. https://doi.org/10.1016/j.foreco.2012.03.030
  • Gruffman, L., Jämtgård, S., Näsholm, T., 2014. Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings. Tree Physiol 34:205-213. https://doi.org/10.1093/treephys/tpt121
  • Gruffman, L., Palmroth, S., Näsholm, T., 2013. Organic nitrogen uptake of Scots pine seedlings is independent of current carbohydrate supply. Tree Physiol 33:590-600. https://doi.org/10.1093/treephys/tpt041
  • Heuer, B., 2010. Role of Proline in plant response to drought and salinity. In: Handbook of Plant and Crop Stress,Third Edition. CRC Press, pp 213-238. https://doi.org/10.1201/b10329-12
  • Kielland, K., 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75:2373-2383. https://doi.org/10.2307/1940891
  • Koide, R.T., Robichaux, R.H., Morse, S.R., Smith, C.M., 1989. Plant water status, hydraulic resistance and capacitance. In: Pearcy RW, Ehleringer JR, Mooney HA, Rundel PW (eds) Plant Physological Ecology: Field Methods and Instrumentation, 1st. Chapman and Hall, London, pp 161-183. https://doi.org/10.1007/978-94-009-2221-1_9
  • Kronzucker, H.J., Siddiqi, M.Y., Glass, A.D.M., 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59. https://doi.org/10.1038/385059a0
  • Lipson D., Näsholm T., 2001. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305-316. https://doi.org/10.1007/s004420100693
  • Marschner, H., Häussling, M., George, E., 1991. Ammonium and nitrate uptake rates and rhizosphere pH in non-mycorrhizal roots of Norway spruce [Picea abies (L.) Karst.]. Trees 5:14-21. https://doi.org/10.1007/BF00225330
  • McKane, R.B., Johnson, L.C., Shaver, G.R., Nadelhoffer, K.J., Rastetter, E.B., Fry B., et al 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68-71. https://doi.org/10.1038/415068a
  • Metcalfe, R.J., Nault, J., Hawkins, B.J., 2011. Adaptations to nitrogen form: comparing inorganic nitrogen and amino acid availability and uptake by four temperate forest plants. Can J For Res 41:1626-1637. https://doi.org/10.1139/x11-090
  • Nacry, P., Bouguyon, E., Gojon, A., 2013. Nitrogen acquisition by roots: physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 370:1-29. https://doi.org/10.1007/s11104-013-1645-9
  • Näsholm, T., Ekblad, A., Nordin, A., Giesler, R., Högberg, M.N., Högberg, P., 1998. Boreal forest plants take up organic nitrogen. Nature 392:914-916. https://doi.org/10.1038/31921
  • Näsholm, T., Kielland, K., Ganeteg, U., 2009. Uptake of organic nitrogen by plants. New Phytol 182:31-48. https://doi.org/10.1111/j.1469-8137.2008.02751.x
  • Öhlund, J., Näsholm, T., 2001. Growth of conifer seedlings on organic and inorganic nitrogen sources. Tree Physiol 21:1319-1326. https://doi.org/10.1093/treephys/21.18.1319
  • Oliet, J.A., Puértolas, J., Planelles, R., Jacobs, D.F., 2013. Nutrient loading of forest tree seedlings to promote stress resistance and field performance: a Mediterranean perspective. New For 44:649-669. https://doi.org/10.1007/s11056-013-9382-8
  • Persson, J., Gardeström, P., Näsholm, T., 2006. Uptake, metabolism and distribution of organic and inorganic nitrogen sources by Pinus sylvestris. J Exp Bot 57:2651-2659. https://doi.org/10.1093/jxb/erl028
  • Schulz, H., Härtling, S., Stange, C.F., 2011. Species-specific differences in nitrogen uptake and utilization by six European tree species. J Plant Nutr Soil Sci 174:28-37. https://doi.org/10.1002/jpln.201000004
  • Szabados, L., Savouré, A., 2010. Proline: a multifunctional amino acid. Trends Plant Sci 15:89-97. https://doi.org/10.1016/j.tplants.2009.11.009
  • Taïbi K., Del Campo A.D., Vilagrosa A., Bellés J.M., López-Gresa M.P., Pla D., et al 2018 Drought tolerance in Pinus halepensis seed sources as identified by distinctive physiological and molecular markers. Front Plant Sci 8:1202. https://doi.org/10.3389/fpls.2017.01202
  • Toca A., Oliet J.A., Villar-Salvador P., Maroto J., Jacobs D.F. 2018 Species ecology determines the role of nitrogen nutrition in the frost tolerance of pine seedlings. Tree Physiol 38:96-108. https://doi.org/10.1093/treephys/tpx165
  • Uscola M., Villar-Salvador P., Oliet J.A., Warren C.R. 2014 Foliar absorption and root translocation of nitrogen from different chemical forms in seedlings of two Mediterranean trees. Environ Exp Bot 104:34-43. https://doi.org/10.1016/j.envexpbot.2014.03.004
  • Uscola M., Villar-Salvador P., Oliet J.A., Warren C.R. 2017 Root uptake of inorganic and organic N chemical forms in two coexisting Mediterranean forest trees. Plant Soil 1-6. https://doi.org/10.1007/s11104-017-3172-6
  • Villar-Salvador P., Peñuelas J.L., Jacobs D.F. 2013 Nitrogen nutrition and drought hardening exert opposite effects on the stress tolerance of Pinus pinea L. seedlings. Tree Physiol 33:221-32. https://doi.org/10.1093/treephys/tps133
  • Villar-Salvador P., Puértolas J., Cuesta B., Peñuelas J.L., Uscola M., Heredia-Guerrero N., Rey Benayas J.M. 2012 Increase in size and nitrogen concentration enhances seedling survival in Mediterranean plantations. Insights from an ecophysiological conceptual model of plant survival. New For 43:755-770. https://doi.org/10.1007/s11056-012-9328-6
  • Villar-Salvador P., Puértolas J., Peñuelas J.L., Planelles R. 2005 Effect of nitrogen fertilization in the nursery on the drought and frost resistance of Mediterranean forest species. Investig Agrar Sist y Recur For 14:408-418. https://doi.org/10.5424/srf/2005143-00935
  • Zerihun A., McJenzie B.A., Morton J.D. 1998 Photosynthate costs associated with the utilization of different nitrogen-forms: influence on the carbon balance of plants and shoot-root biomass partitioning. New Phytol 138:1-11. https://doi.org/10.1046/j.1469-8137.1998.00893.x