A Study on the Performance of Secure Elliptic Curves for Cryptographic Purposes
- Raúl Durán Díaz 1
- Victor Gayoso Martíınez 2
- Luis Hernández Encinas 2
- Martín Muñoz, Agustin 2
-
1
Universidad de Alcalá
info
-
2
Centro de Tecnologías Físicas y de la Información Leonardo Torres Quevedo
info
Centro de Tecnologías Físicas y de la Información Leonardo Torres Quevedo
Madrid, España
- Manuel Graña (coord.)
- José Manuel López-Guede (coord.)
- Oier Etxaniz (coord.)
- Álvaro Herrero (coord.)
- Héctor Quintián (coord.)
- Emilio Corchado (coord.)
Editorial: Springer Suiza
ISBN: 978-3-319-47364-2, 3-319-47364-6, 978-3-319-47363-5, 3-319-47363-8
Año de publicación: 2017
Páginas: 658-667
Congreso: International Conference on Computational Intelligence in Security for Information Systems (9. 2016. San Sebastián)
Tipo: Aportación congreso
Resumen
Elliptic Curve Cryptography (ECC) is a branch of public-key cryptography based on the arithmetic of elliptic curves. In the short life of ECC, most standards have proposed curves defined over prime finite fields satisfying the curve equation in the short Weierstrass form. However, some researchers have started to propose as a more secure alternative the use of Edwards and Montgomery elliptic curves, which could have an impact in current ECC deployments. This contribution evaluates the performance of the three types of elliptic curves using some of the examples provided by the initiative SafeCurves and a Java implementation developed by the authors, which allows us to offer some conclusions about this topic.