Presence of boulders associated with an extreme wave event in the western Mediterranean, Cape Cope, Murcia, Spainpossible evidence of a tsunami

  1. Javier Lario 1
  2. Chris Spencer 2
  3. Teresa Bardají 3
  1. 1 Universidad Nacional de Educación a Distancia
    info

    Universidad Nacional de Educación a Distancia

    Madrid, España

    ROR https://ror.org/02msb5n36

  2. 2 UWE Bristol
  3. 3 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2023

Volumen: 49

Número: 2

Páginas: 115-132

Tipo: Artículo

DOI: 10.1007/S41513-023-00208-8 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

La región de Murcia, en el sureste de la Península Ibérica, registra una actividad tectónica moderada, registrándose terremotos de hasta 6,2-6,9 Mw. Aún con una actividad sísmica de esta magnitud no existen registros geológicos ni instrumentales de tsunamis que hayan afectado a la zona. La presencia en Cabo Cope, Murcia, de un cordón litoral de bloques imbricados de tamaño métrico (compuestos por rocas del Pleistoceno superior) que alcanzan una altura de hasta 4 m sobre el nivel del mar, indica que en la zona se ha producido un evento de oleaje extremo durante el Holoceno. Mediante el estudio de las condiciones de oleaje generadas durante grandes tormentas en esta zona, se infere que este cordón litoral de bloques parece haber sido causado por oleaje extremo asociado a un evento sísmico, como un tsunami.

Información de financiación

Financiadores

Referencias bibliográficas

  • Alfaro, P., Bartolomé, R., Borque, J. M., Estévez, A., García-Mayordomo, J., García-Tortosa, F. J., Gil, A. J., Gràcia, E., Lo Iacono, C., & Perea, H. (2012). The Bajo Segura Fault Zone: Active blind thrusting in the Eastern Betic Cordillera (SE Spain). Journal of Iberian Geology, 38(1), 271–284.
  • Álvarez-Gómez, J. A., Aniel-Quiroga, I., González, M., & Otero, L. (2011). Tsunami hazard at the Western Mediterranean Spanish coast from seismic sources. Natural Hazards and Earth System Sciences, 11, 227–240.
  • Barbano, M. S., Pirrota, C., & Gerardi, F. (2010). Large boulders along the south-eastern Ionian coast of Sicily: Storm or tsunami deposits? Marine Geology, 275, 140–154.
  • Bardají, T. (1999). Evolución Geomorfológica durante el Cuaternario de las Cuencas Neógenas litorales del Sur de Murcia y Norte de Almería (p. 492). Universidad Complutense de Madrid.
  • Bardají, T., Cabero, A., Lario, J., Zazo, C., Silva, P. G., Goy, J. L., & Dabrio, C. J. (2015). Coseismic vs. climatic factors in the record of relative sea-level changes: An example from the Last Interglacials in SE Spain. Quaternary Science Reviews, 113, 60–77.
  • Bardají, T., Civis, J., Dabrio, C. J., Goy, J. L., Somoza, L., & Zazo, C. (1986). Geomorfología y estratigrafía de las secuencias marinas y continentales cuaternarias de la Cuenca de Cope (Murcia, España). In F. López & J. B. Thornes (Eds.), Estudios sobre Geomorfología del Sur de España (pp. 11–16). Murcia: Universidad de Murcia.
  • Bardají, T., Goy, J. L., Zazo, C., Hillaire-Marcel, C., Dabrio, C. J., Cabero, A., Ghaleb, B., Silva, P. G., & Lario, J. (2009). Sea level and climate changes during OIS 5e in the Western Mediterranean. Geomorphology, 104, 22–37.
  • Bosnic, I., Costa, P. J. M., Dourado, F., La Selle, S. P., & Gelfenbaum, G. (2021). Onshore fow characteristics of the 1755 CE Lisbon tsunami: Linking forward and inverse numerical modelling. Marine Geology, 434, 106432.
  • Bousquet, P. (1979). Quaternary strike-slip faults in southeastern Spain. Tectonophysics, 52, 277–286.
  • Bryant, E. A., & Nott, J. (2001). Geological indicators of large tsunami in Australia. Natural Hazards, 24, 231–249.
  • Bujan, N., & Cox, R. (2020). Maximal heights of nearshore storm waves and resultant onshore fow velocities. Frontiers in Marine Science, 7, 309.
  • Capel Molina, J. J. (1991): El clima murciano. Dinámica. In A. Morales Gil, & F. Calvo (Eds). Atlas de la Región de Murcia, Presidencia Región de Murcia, La Opinión e lberdrola. Murcia, 85–96.
  • Conesa, C., & Alonso, F. (2006). El clima de la Región de Murcia. In C. Conesa (Ed.), El Medio Físico de la Región de Murcia (pp. 95–127). Servicio de Publicaciones.
  • Coppier, G., Griveaud, P., Larouziere, F. D., Montenat, C., & Ott d’Estevou, P. (1989). Example of Neogene tectonic indentation in the Eastern Betic Cordilleras: The Arc of Aguilas (Southeastern Spain). Geodinamica Acta, 3, 37–51.
  • Costa, P. J. M., Andrade, C., Freitas, M. C., Oliveira, M. A., da Silva, C. M., Omira, R., Taborda, R., Baptista, M. A., & Dawson, A. G. (2011). Boulder deposition during major tsunami events. Earth Surface Processes and Landforms, 36, 2054–2068.
  • Cox, R., O’Boyle, L., & Cytrynbaum, J. (2019). Imbricated coastal boulder deposits are formed by storm waves and can preserve a long-term storminess record. Scientifc Reports, 9, 10784.
  • Dabrio, C. J., Zazo, C., Goy, J. L., Santiesteban, C., Bardají, T., Somoza, L., Baena, J., & Silva, P. G. (1991). Neogene and Quaternary fan-delta deposits in southeastern Spain. Cuadernos De Geología Iberica, 15, 327–400.
  • De Martini, P. M., Bruins, H. J., Feist, L., Goodman-Tchernov, B. N., Hadler, H., Lario, J., Mastronuzzi, G., Obrocki, L., Pantosti, D., Paris, R., Reicherter, K., Smedile, A., & Vött, A. (2021). The Mediterranean Sea and the Gulf of Cadiz as a natural laboratory for paleotsunami research: Recent advancements. Earth Science Reviews, 216, 1–27.
  • Engel, M., & May, S. M. (2012). Bonaire’s boulder felds revisited: Evidence for Holocene tsunami impact on the Leeward Antilles. Quaternary Science Reviews, 54, 126–141.
  • Etienne, S., Buckley, M., Paris, R., Nandasena, A. K., Clark, K., Strotz, L., Chagué-Gof, C., Gof, J., & Richmond, B. (2011). The use of boulders for characterising past tsunami: Lessons from the 2004 Indian Ocean and 2009 South Pacifc tsunami. Earth Science Reviews, 107, 76–90.
  • García-Tortosa, F.J., Leyva, F., & Bardají, T. (2004). Cartografía Geológica y Memoria. Mapa Geológico de España 1:50.000, Plan MAGNA, 3ª Serie. Hoja 997 (bis), Cope.
  • Gómez-Pujol, L., & Roig-Munar, F. X. (2013). Acumulaciones de grandes bloques en las crestas de los acantilados del sur de Menorca (Illes Balears): Observaciones preliminares. Geo-Temas, 14, 71–74.
  • Goto, K., Chavanich, S. A., Imamura, F., Kunthasap, P., Matsui, T., Minoura, K., Sugawara, D., & Yanagisawa, H. (2007). Distribution, origin and transport process of boulders deposited by the 2004 Indian Ocean tsunami at Pakarang Cape, Thailand. Sedimentary Geology, 202, 821–837.
  • Goto, K., Okada, K., & Imanura, F. (2009). Characteristics and hydrodynamics of boulders transported by storm waves at Kudaka Island, Japan. Marine Geology, 262, 14–24.
  • Goto, K., Sugawara, D., Ikema, S., & Miyagi, T. (2012). Sedimentary processes associated with sand and boulder deposits formed by the 2011 Tohoku-oki tsunami at Sabusawa Island, Japan. Sedimentary Geology, 282, 188–198.
  • Gràcia, E., Vizcaino, A., Escutia, C., Asioli, A., Rodés, A., Pallás, R., Garcia-Orellana, J., Lebreiro, S., & Goldfnger C. (2010). Holocene earthquake record ofshore Portugal (SW Iberia): Testing turbidite palaeoseismology in a slow slow-convergence margin. Quaternary Science Reviews, 29, 1156–1172.
  • Griveaud, P. (1989). Etude Géologique du secteur d’Aguilas (Sudest de l'Espagne): Exemple de poinçonnement néogène dans la zone Bétique interne oriental. PhD Tesis, Univ. Claude Bernard, Lyon 1, France, 198 pp.
  • Guerrieri, L., & Vittori, E. (2007). Environmental Seismic Intensity Scale 2007—ESI 2007. In: Memorie Descrittive della Carta Geologica d'Italia, vol. 74. Servizio Geologico d'Italia e Dipartimento Difesa del Suolo, APAT, Roma, Italy, 54 pp.
  • Guza, R. T., & Thornton, E. B. (1982). Swash oscillations on a natural beach. Journal of Geophysical Research, 87, 483–491.
  • IOC (2011): ICG/NEAMTWS: Seventh Session Paris, France 23–25 November 2010. Intergovernmental Oceanographic Commission, Reports of Governing and Major Subsidiary Bodies, p. 45.
  • Kelletat, D., & Schellmann, G. (2002). Tsunamis on cyprus: Field evidences and 14C dating results. Zeitschrift Für Geomorphologie, 46(1), 19–34.
  • Lario, J., Bardají, T., Silva, P. G., Zazo, C., & Goy, J. L. (2016). Improving the coastal record of tsunamis in the ESI-07scale: Tsunami environmental efects scale (TEE-16 scale). Geologica Acta, 14, 179–193.
  • Lario, J., Spencer, C., Bardaji, T., & Marchante, A. (2017). Eventos de oleaje extremo en la costa del sureste peninsular: Bloques y megabloques como indicadores de tsunamis o tormentas extremas. Geo-Temas, 17, 227–230.
  • Lario, J., Spencer, C., Bardají, T., Marchante, A., Garduño-Monroy, V. H., Macias, J., & Ortega, S. (2020). An extreme wave event in eastern Yucatán, Mexico: Evidence of a palaeotsunami event during the Mayan times. Sedimentology, 67, 1481–1504.
  • Lario, J., Zazo, C., Goy, J. L., Silva, P. G., Bardaji, T., Cabero, A., & Dabrio, C. J. (2011). Holocene palaeotsunami catalogue of SW Iberia. Quaternary International, 242, 196–200.
  • Larouziere, F. D., Bolze, J., Bordet, P., Hernández, J., Montenat, C., & Ott d’Estevou, P. (1988). The Betic segment of the transAlboran shear zone during the Late Miocene. Tectonophysics, 152, 41–52.
  • Lau, A., Terry, J. P., Ziegler, A., Pratap, A., & Harris, D. (2018). Boulder emplacement and remobilisation by cyclone and submarine landslide tsunami waves near Suva City, Fiji. Sedimentary Geology, 364, 242–257.
  • Maouche, S., Morhange, C., & Meghraoui, M. (2009). Large boulder accumulation on the Algerian coast evidence tsunami events in the western Mediterranean. Marine Geology, 262, 96–104.
  • Martínez-Díaz, J.J., Rodríguez-Pascua, M.A., Pérez López, R., García Mayordomo, J., Giner Robles, J., Martín-González, F., Rodríguez Peces, M., Álvarez Gómez, J.A., & Insua Arévalo, J.M. (2011). Informe Geológico Preliminar del Terremoto de Lorca del 11 de mayo del año 2011 (5.1 Mw). Instituto Geológico y Minero de España.
  • Martin-Prieto, J. A., Roig-Munar, F. X., Rodrigues-Perea, A., & Gelabert, B. (2019). Nova troballa de blocs de tsunami a les costes rocoses de sa Punta de sa Miloca-Corral Fals (Sud de Menorca, illes Balears). Nemus, 9, 7–14.
  • Mastronuzzi, G., & Sansò, P. (2000). Boulders transport by catastrophic waves along the Ionian coast of Apulia (Southern Italy). Marine Geology, 170, 93–103.
  • Mastronuzzi, G., & Sansò, P. (2004). Large boulder accumulations by extreme waves along the adriatic coast of southern Apulia (Italy). Quaternary International, 120, 173–184.
  • Mastronuzzi, G., Pignatelli, C., & Sansò, P. (2006). Boulder Fields: A Valuable Morphological Indicator of Paleotsunami in the Mediterranean Sea. Zeitschrift Für Geomorphologie, 146, 173–194.
  • Mastronuzzi, G., Pignatelli, C., Sansò, P., & Selleri, G. (2007a). Boulder accumulations produced by the 20th February 1743 tsunami along the coast of southeastern Salento (Apulia region, Italy). Marine Geology, 242, 191–205.
  • Mastronuzzi, G., Pignatelli, C., Sansò, P., & Selleri, G. (2007b). Boulder accumulations produced by the 20th of February 1743 tsunami along the coast of South Eastern Salento (Apulia region, Italy). Marine Geology, 242, 191–205.
  • Mezcua, J. (1982). Catálogo General de Isosistas de la Península Ibérica. Instituto Geográfco Nacional. Publicación 202, 319 pp.
  • Montenat, C., Ott d’Estevou, P., & Masse, P. (1987). Tectonic-sedimentary characters of the Betic Neogene basins evolving in a crustal transcurrent shear zone (SE Spain). Bulletin Des Centres De Recherches Exploration - Production Elf-Aquitaine, 11, 1–22.
  • Nandasena, N. A. K., Paris, R., & Tanaka, N. (2011a). Reassessment of hydrodynamic equations: Minimum fow velocity to initiate boulder transport by high energy events (storms, tsunamis). Marine Geology, 281, 70–84.
  • Nandasena, N. A. K., Paris, R., & Tanaka, N. (2011b). Numerical assessment of boulder transport by the 2004 Indian ocean tsunami in Lhok Nga, West Banda Aceh (Sumatra, Indonesia). Computers & Geosciences, 37, 1391–1399.
  • Nandasena, N. A. K., Sasaki, Y., & Tanaka, N. (2012). Modelling feld observations of the 2011 Great East Japan tsunami: Efcacy of artifcial and natural structures on tsunami mitigation. Coastal Engineering, 67, 1–13.
  • Nandasena, N. A. K., Tanaka, N., Sasaki, Y., & Osada, M. (2014). Reprint of “Boulder transport by the 2011 Great East Japan tsunami: Comprehensive feld observations and whither model predictions?” Marine Geology, 358, 49–66.
  • Noormets, R., Crook, K. A. W., & Felton, E. A. (2004). Sedimentology of rocky shorelines: 3. Hydrodynamics of megaclast emplacement and transport on a shore platform, Oahu. Hawaii. Sedimentary Geology, 172, 41–65.
  • Nott, J. (2003). Waves, coastal boulder deposits and the importance of the pretransport setting. Earth Planetary Science Letters, 210, 269–276.
  • Nott, J. (2004). The tsunami hypothesis: Comparisons of the feld evidence against the efects, on the Western Australian coast, of some of the most powerful storms on Earth. Marine Geology, 208, 1–12.
  • Ott d’Estevou, P., & Montenat, C. (1985). Evolution structurale de la zone bétique orientale (Espagne) du Tortonien a l’Holocène. Comptes Rendus De l’ Academie Des Sciences Paris, 300, 363–368.
  • Paris, R., Wassmer, P., Sartohadi, J., Lavigne, F., Barthomeuf, B., Desgages, E., Grancher, D., Baumert, P., Vautier, F., Brunstein, D., & Gomez, C. (2009). Tsunamis as geomorphic crises: Lessons from the December 26, 2004 tsunami in Lhok Nga, west Banda Aceh (Sumatra, Indonesia). Geomorphology, 104, 59–72.
  • Pignatelli, C., Sanso, P., & Mastronuzzi, G. (2009). Evaluation of tsunami fooding using geomorphologic evidence. Marine Geology, 260, 6–18.
  • Pirazzoli, P. A., Stiros, S. C., Arnold, M., Laborel, J., & LaborelDeguen, F. (1999). Late holocene coseismic vertical displacements and tsunami deposits near Kynos, Gulf of Euboea, Central Greece. Physics and Chemistry of the Earth, 24, 361–367.
  • Reicherter, K., & Becker-Heidmann, P. (2009). Tsunami deposits in the western Mediterranean: Remains of the 1522 Almerı́a earthquake? In K. Reicherter, A. M. Michetti, & P. G. Silva (Eds.), Palaeoseismology: Historical and Prehistorical Records of Earthquake Ground Efects for Seismic Hazard Assessment (pp. 217–235). Geological Society.
  • Roig-Munar, F. X., Forner, E., Gual, V., Martín-Prieto, J. Á., Segura, J., Rodríguez-Perea, A., Gelabert, B., & Vilaplana, J. M. (2019a). Els blocs de tsunamis de la costa rocosa de la serra d’Irta (el Baix Maestrat): Una proposta com a LIG (Lloc d’Interès Geològic). Nemus, 9, 195–210.
  • Roig-Munar, F. X., Forner, E., Martín-Prieto, J. Á., Segura, J., Rodríguez-Perea, A., Gelabert, B., & Vilaplana, J. M. (2018b). Presència de blocs de tsunamis i tempestes a les costes rocoses de la serra d’Irta (el Baix Maestrat, País Valencià). Nemus, 8, 7–21.
  • Roig-Munar, F. X., Rodríguez-Perea, A., Vilaplana, J. M., & MartínPrieto, J. (2019b). Tsunami boulders in Majorca Island (Balearic Islands, Spain). Geomorphology, 334, 76–90.
  • Roig-Munar, F. X., Vilaplana, J. M., Rodríguez-Perea, A., MartínPrieto, J. Á., & Gelabert, B. (2018a). Tsunamis boulders on the rocky shores of Minorca (Balearic Islands). Natural Hazards and Earth System Sciences, 18, 1985–1998.
  • Schefers, A. (2005). Coastal response to extreme wave events - hurricanes and tsunamis on Bonaire. Essener Geographische Arbeiten, 37, 2.
  • Schefers, A., & Kinis, S. (2014). Stable imbrication and delicate/unstable settings in coastal boulder deposits: Indicators for tsunami dislocation? Quaternary International, 332, 73–84.
  • Schefers, A., Kelletat, D., Vött, A., May, S., & Schefers, S. (2008). Late Holocene tsunami traces on the western and southern coastlines of the Peloponnesus (Greece). Earth and Planetary Science Letters, 269, 271–279.
  • Schefers, S. R., Haviser, J., Browne, T., & Schefers, A. (2009). Tsunamis, hurricanes, the demise of coral reefs and shifts in prehistoric human populations in the Caribbean. Quaternary International, 195, 69–87.
  • Scicchitano, G., Pignatelli, C., Spampinato, C. R., Piscitelli, A., Milella, M., Monaco, C., & Mastronuzzi, G. (2012). Terrestrial Laser Scanner techniques in the assessment of tsunami impact on the Maddalena peninsula (South-eastern Sicily, Italy). Earth, Planets and Space, 64, 889–903.
  • Senechal, N., Coco, G., Bryan, K. R., & Holman, R. A. (2011). Wave runup during extreme storm conditions. Journal of Geophysical Research, 116, C07032.
  • Shah-Hosseini, M., Morhange, C., De Marco, A., Wante, J., Anthony, E. J., Sabatier, F., Mastronuzzi, G., Pignatelli, C., & Piscitelli, A. (2013). Coastal boulders in Martigues, French Mediterranean: Evidence for extreme storm waves during the little ice age. Zeitschrift Für Geomorphologie, 57(4), 181–199.
  • Silva, P. G., Goy, J. L., Somoza, L., Zazo, C., & Bardají, T. (1993). Landscape response to strike-slip faulting linked to collisional settings: Quaternary tectonics and basin formation in the Eastern Betics, southeastern Spain. Tectonophysics, 224, 289–303.
  • Somoza, L., Medialdea, T., Terrinha, P., Ramos, A., & Vázquez, J. T. (2021). Submarine active faults and Morpho-Tectonics around the Iberian margins: seismic and tsunamis hazards. Frontiers in Earth Science, 9, 653639.
  • Spiske, M., & Bahlburg, H. (2011). A quasi-experimental setting of coarse clast transport by the 2010 Chile tsunami (Bucalemu, Central Chile). Marine Geology, 289, 72–85.
  • Spiske, M., Böröcz, Z., & Bahlburg, H. (2008). The role of porosity in discriminating between tsunami and hurricane emplacement of boulders—A case study from the Lesser Antilles, southern Caribbean. Earth and Planetary Science Letters, 268, 384–396.
  • Switzer, A. D., & Burston, J. M. (2010). Competing mechanisms for boulder deposition on the southeast Australian coast. Geomorphology, 114, 42–54.
  • Tomassetti, J. M., Arteaga, C., Navarro, I., Parra, L., Neogi, S., Taylor, S., Narváez, C., Torres, F., & Alcántara-Carrió, J. (2021). Sedimentological, geoarchaelogical and historical evidences of the 881 AD Earthquake and Tsunami in the Western Mediterranean Sea (Estepona, Málaga). The Science of Tsunami Hazards, 40, 42–71.
  • Vázquez, J. T., Ercilla, G., Alonso, B., Pelaez, J. P., Palomino, D., León, R., Bárcenas, P., Casas, D., Estrada, F., Fernández-Puga, M. C., Galindo-Zaldívarr, J., Henares, J., Llorente, M., & Sánchez Guillamón, O. (2021). Triggering processes of tsunamis in the Alboran Sea and Gulf of Cádiz: A general review. In M. Álvarez MartíAguilar & F. Machuca Prieto (Eds.), Historical Earthquakes and Tsunamis in the Iberian Peninsula—an Interdiciplinary Dialogue (pp. 65–104). Springer Earth System Sciences.
  • Vött, A., Brückner, H., May, M., Lang, F., Herd, R., & Brockmüller, S. (2008). Strong tsunami impact on the Bay of Aghios Nikolaos and its environs (NW Greece) during Classical-Hellenistic times. Quaternary International, 181, 105–122.
  • Vött, A., Bruins, H. J., Gawehn, M., Goodman-Tchernov, B. N., De Martini, P. M., Kelletat, D., Mastronuzzi, G., Reicherter, K., Röbke, B. R., Schefers, A., Willershäuser, T., Avramidis, P., Bellanova, P., Costa, P. J. M., Finkler, C., Hadler, H., Koster, B., Lario, J., Reinhardt, E., … Szczuciński, W. (2019). Publicity waves based on manipulated geoscientifc data suggesting climatic trigger for majority of tsunami fndings in the Mediterranean. Zeitschrift Für Geomorphologie, 62, 7–45.
  • Weijermars, R. (1987). The Palomares brittle-ductile shear zone of southern Spain. Journal of Structural Geology, 9, 139–157.
  • Whelan, F., & Kelletat, D. (2005). Boulder deposits on the southern Spanish Atlantic coast: Possible evidence for the 1755 AD Lisbon tsunami? The Science of Tsunami Hazards, 23, 22–38.
  • Yamada, M., Fujino, S., & Goto, K. (2014). Deposition of sediments of diverse sizes by the 2011 Tohoku-oki tsunami at Miyako City, Japan. Marine Geology, 358, 67–78.
  • Zazo, C., Goy, J. L., Dabrio, C. J., Lario, J., González-Delgado, A., Bardají, T., Hillaire-Marcel, C., Cabero, A., Ghaleb, B., Borja, F., Silva, P. G., Roquero, E., & Soler, V. (2013). Retracing the quaternary history of sea-level changes in the Spanish Mediterranean–Atlantic coasts: Geomorphological and sedimentological approach. Geomorphology, 196, 36–49.