Sistemas de recomendación basados en filtrado colaborativoaceleración mediante computación reconfigurable y aplicaciones predictivas sensoriales
- Pajuelo Holguera, Francisco
- Juan Antonio Gómez Pulido Director/a
- Fernando Ortega Requena Codirector/a
Universidad de defensa: Universidad de Extremadura
Fecha de defensa: 14 de julio de 2021
- José María Granado Criado Presidente/a
- Raúl Lara Cabrera Secretario/a
- José Manuel Lanza Gutiérrez Vocal
Tipo: Tesis
Resumen
Los Sistemas de Recomendación son ampliamente utilizados en la recomendación de productos en diferentes plataformas. En este ámbito de conocimiento, la tesis doctoral se centra en dos líneas de investigación complementarias: aceleración del cálculo y predicción basada en comportamiento. Los algoritmos que trabajan las recomendaciones son sofisticados y pueden requerir esfuerzos computacionales muy altos cuando trabajan en entornos de muchos usuarios y datos. Esta circunstancia motivó la investigación en la aceleración de la computación de los algoritmos para obtener resultados de recomendación en tiempos razonables, mediante tecnología FPGA, utilizando lenguajes de síntesis de alto nivel como herramienta de modelación y estrategias de paralelización. A partir de los algoritmos acelerados, se propuso una aplicación innovadora de en entornos de muchos usuarios y datos. Esta circunstancia motivó la investigación en la aceleración de la computación de los algoritmos para obtener resultados de recomendación en tiempos razonables, mediante tecnología FPGA, utilizando lenguajes de síntesis de alto nivel como herramienta de modelación y estrategias de paralelización. A partir de los algoritmos acelerados, se propuso una aplicación innovadora de los sistemas de recomendación para un problema de predicción en una infraestructura con sensores. En este caso, se proponen los sistemas de recomendación como motor de predicción para determinar los valores de parámetros ambientales en función de la actividad humana realizada sobre espacios, los cuales están monitorizados mediante sensores inalámbricos. Adicionalmente, se abordó un tercer estudio consecuencia del planteamiento anterior, relativo a la selección óptima de los datos de test necesarios para evaluar los algoritmos de predicción