Flexión compuesta esviada en secciones de hormigón armado doblemente simétricas. Dirección de capacidad máxima

  1. Martínez, M. 1
  2. Lanti, R. 1
  3. Echeverria, E. 1
  1. 1 Universidad de Alcalá de Henares, España
Journal:
Informes de la construcción

ISSN: 0020-0883

Year of publication: 2019

Volume: 71

Issue: 554

Type: Article

DOI: 10.3989/IC.59325 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Informes de la construcción

Sustainable development goals

Abstract

The use of simplified stress-strain relationship to describe the behavior of the concrete in compression (rectangular parabola, rectangular block), leads to find that the maximum capacity of a double symmetric reinforced concrete section under axial load an biaxial bending in the main symmetrical axis of the section. For the same section, the use of hyperbolic stress-strain relationship to describe the concrete behavior is found that the maximum capacity of the section under elevated compression level and biaxial bending does not lay in the symmetry axis direction but in an arbitrary one. A collection of interaction diagrams, biaxial bending an axial load, (Mx, My) of two sections with different amount of steel and two different axial loads are calculated in this research for two different stress-strain relationship for concrete (rectangular parabola, and hyperbolic), in order to find the direction of maximum resistance of the section under axial load and biaxial bending.

Bibliographic References

  • (1) Ministerio de Fomento, Comisión Permanente del Hormigón (2008). Instrucción de Hormigón Estructural EHE-08.
  • (2) Withney, C., Edward, C., (1956). Guide for Ultimate Strength Design of Reinforced Concrete. ACI Journal, Proceedings V.53, 445-490.
  • (3) Hognestad, E. (1951). A Study of Combined Bending and Axial Load in Reinforced Concrete Members. Bulletin Nº 399, Engineering Experimental Station, University of Illinois, Urbana, 128 pp
  • (4) Kent, D. C., Park, R. (1971). Flexural Members with Confined Concrete. Journal of the Structural Division, American Society of Civil Engineers, 7, pp. 1969-1990.
  • (5) Sargin, M. (1971). Stress-strain Relationship for Concrete and the Analysis of Structural Concrete Sections. Solid Mechanics Division, University of Waterloo, Waterloo, Ontario.
  • (6) Morán, F. (1972). Design of reinforced concrete sections under normal loads and stresses in the ultimate state. CEB Bulletin d´Information Nº 83.
  • (7) Pannell, F.N. 1963. “Failure surfaces for members in compression and biaxial bending.” ACI Journal, Proceedings, 60 (1): 129-140.
  • (8) Bresler, B. (1960). Design criteria for reinforced columns under axial load and biaxial bending. ACI Journal, Proceedings, 57, 484-490.
  • (9) ACI Committee 318, American Concrete Institute. (2014). Building Code Requirements for Structural Concrete ACI-318-14.
  • (10) Parme, A. L, Nieves, J. M., Gouwens, A. (1966). Capacity of Reinforced Rectangular Columns Subject to Biaxial Bending. ACI Journal, Proceedings, 63, 911-923.
  • (11) Weber, D. C. (1966). Ultimate Strength Design Charts for Columns with Biaxial Bending. ACI Journal, Proceedings, 63, 1205-1320, Disc., 1538-1586.
  • (12) Paulay T., Row D. G. (1973). Biaxial flexure and axial load interaction in short rectangular reinforced concrete columns. Bulletin of New Zealand Society for Earthquake Engineering.
  • (13) Grasser E. (1981). Manual CEB/FIP on Bending and Compression, Bulletin D´Information n.º 141, Construction Press.
  • (14) Papanikolaou V. K. (2012). Analysis of arbitrary composite sections in biaxial bending and axial load. Computers and Structures 98-99:33-54.
  • (15) Lejano B. A. (2007). Investigation of Biaxial Bending of Reinforced Concrete Columns Through Fiber Method Modeling. Journal of Research in Science, Computing, and Engineering 4:3, 61-73.
  • (16) Gil-Martín L.M., Hernández-Montes E., Aschheim M. (2007). Optimal reinforcement of RC columns for biaxial bending. Material and Structures 43(9):1245-56.
  • (17) Leite L. C, Bonet S. J, Migel S. P., Pallarés R. L. (2012). Estudio experimental de soportes de hormigón armado sometidos a flexo-compresión con excentricidades y ángulos de esviaje desiguales en los extremos. Encontro Nacional Betau Estrutural – BE2012 FEUP.
  • (18) Sánchez-Olivares, G., Tomás, A. (2017). Improvements in meta-heuristic algorithms for minimum cost design of reinforced concrete rectangular sections under compression and biaxial bending. Engineering Structures, 130, pp 162-179.
  • (19) Farah, A., Huggins, M. W. (1969). Analysis of Reinforced Concrete Columns Subjected to Longitudinal Load and Biaxial Bending. ACI Journal, Proceedings, 66. 569-575.