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Abstract

Nowadays, one of the priorities of the European Commission is to reduce the environmental impact of aviation through

the advanced design of novel aircraft configurations. This is of utmost importance in order to decrease the environ-

mental footprint of aviation and to reduce fuel consumption and make airlines more profitable. This implies that new

methods and tools for aerodynamic shape optimization will have to be developed, allowing aircraft configurations that

cannot be obtained with traditional strategies. This paper focuses on the application of enhanced methods in aero-

dynamic shape design optimization to enable advanced aircraft configurations. In particular, this work aims to demon-

strate the feasibility of the proposed strategy to reach optimal configurations that are far away from its baseline

geometry. For this purpose, evolutionary algorithms are combined with support vector machines and applied to the

optimization of a baseline geometry for different flow conditions. In particular, the selected application is based on the

shape optimization problem of the landing gear master cylinder. Results pointed out the feasibility of the mentioned

strategy to enable novel configurations within an aerodynamic shape optimization process.
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Introduction

Currently, there is a strong need for efficient aero-
dynamic shape optimization tools for the industrial
aircraft design that enables the emergence of the
new aircraft generation, able to satisfy the objectives
stated in the ACARE 20201 and 20502 flight paths.
Nowadays, traditional aircraft shapes are already
optimized, and small and local changes in these con-
figurations are no longer providing noticeable
improvements in the performance. Therefore, it is
necessary to target completely innovative shapes
through large deformations and global explorations
of the design space, in order to move forward to the
aircraft shapes that will be demanded by the aero-
nautical industry in the following decades.
Considering this, aerodynamic shape design and
optimization problems based on evolutionary pro-
gramming and surrogate models (also called surro-
gate-based optimization or SBO) have recently
found widespread use in aeronautics, due to the

potential to reach optimal configurations that are
far away from their baseline geometries, and there-
fore, their ability to enable non-conventional aircraft
configurations. In addition, their increasing applic-
ability in aerodynamic shape optimization problems
is also due to the promising potential of these methods
to speed up the whole design process by the use of a
‘‘low-cost’’ objective function evaluation to reduce the
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required number of expensive computational fluid
dynamics (CFD) simulations.

However, the application of these SBO methods
for industrial configurations faces several challenges.
The most crucial challenges nowadays is the so-called
‘‘curse of dimensionality’’, the ability of surrogates
when handling a high number of design parameters,
efficient constraints handling, adequate exploration
and exploitation of the design space, and last but
not least, how to deal with grid deformations in case
of large displacements, which is always the case when
trying to achieve novel configurations from the trad-
itional ones.

This work focuses on the application of enhanced
methods in aerodynamic shape design optimization to
enable novel aircraft configurations. In particular, it
aims to demonstrate the feasibility of a combined
approach, based on evolutionary algorithms (EAs)
and support vector machines (SVMs), to reach opti-
mal configurations that are far away from the baseline
geometry. In order to validate this, the optimization
approach is applied to the selected baseline geometry,
a landing gear master cylinder, resulting in optimal
configurations for each of the defined flow conditions.
This very simple test case (clean cylinder) has been
selected for several reasons: it will allow validation
of the potential of the proposed approach to reach
non-conventional configurations (those which are far
from the initial one), and in addition, it is of interest
for a European aircraft manufacturing industry,
which is looking for flow optimization in this
region. However, in order to further exploit the results
in industry, more complex geometries and constraints,
including also structural aspects, should have to be
taken into consideration.

The paper is structured as follows: the section fol-
lowing provides a literature review on surrogate-based
aerodynamic shape optimization methods in aero-
nautics. Then, the approach to be applied is detailed,
including the parameterization strategy, the EA and
support vector machines for regression (SVMR)
approach, giving details on the EA and SVMR algo-
rithms. Then, the experimental part of the paper is
explained, where different results on the optimized
geometries are outlined. Finally, the last section
draws some conclusions and suggests future activities.

Literature review on aerodynamic
optimization for non-conventional
shapes

In general, optimization methods can be roughly clas-
sified as deterministic, i.e. gradient-based methods
and stochastic. The use of the adjoint approach3–10

allows for the calculation of gradients very efficiently,
since the number of required executions is essentially
independent from the number of design parameters.
However, gradient-based methods require a continu-
ous evaluation function and perform poorly in a noisy

design space, while they also strongly depend on the
baseline configuration, as frequently, they get trapped
into local minima. On the other hand, non-
deterministic methods, such as EAs, are able to cope
with complex, constrained, noisy objective functions,
as a black box, without assumptions of continuity or
linearity11 of the objective function. However,
these methods need a lot of evaluations to get the
optimum solution, even when considering only a
small number of design variables. For this reason,
surrogate models are used as fast evaluators that
replace time-consuming CFD simulations at a cost
of precision. Depending on the training method, sur-
rogate models are classified as off-line12 and on-line
learning,13 in which a selected number of candidates
are sent to the CFD solver in order to improve the
accuracy of the model.

Surrogate methods, based on artificial neural net-
works (ANNs), have been successfully employed as a
predictor of aerodynamic coefficients in the shape
optimization of simple configurations.14–16 In add-
ition, SVMs have been also applied for prediction in
many areas, such as finances or energy.17–21

With respect to SBO applied to aerodynamic shape
design of aeronautical configurations, there have been
several approaches22–28 in the last years trying to
employ different surrogates (for instance, Kriging,
Proper Orthogonal Decomposition, ANNs, etc.) and
geometry parameterization techniques (PARSEC,
Class Shape Transformation method, etc.).

To conclude, the authors have also published
recent research on this topic29–31 applying an SBO
method to the aerodynamic shape optimization of
an RAE2822 two-dimensional airfoil and a Drag pre-
diction workshop (DPW) three-dimensional wing.
However, the work presented here is, to the authors’
knowledge, the first time in the literature that an SBO
strategy is applied to a simple ‘‘dummy’’ baseline
geometry in order to validate its ability to globally
explore the design space and provide optimal geome-
tries. Moreover, the application of this research to
industry is also provided by the test case selection, a
landing gear master cylinder, which is optimized for
certain take-off and landing flow conditions.

SBO strategy

Geometry parameterization

The cylinder grid is deformed through a volumetric
B-spline, as shown in Figure 1. The design variables
are the control points located on the upper and lower
side, which can freely move in any direction, while the
control points located in the middle are kept fixed
during optimization. In this method, the original
geometry is deformed by the movement of control
points in a similar way than the free form deformation
(FFD) technique,32 but in contrast to FFD, deform-
ations of the upper side and lower side can
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be considered independent of each other, which pro-
vides more flexibility.

The computational surface grid vertices are
mapped into the NURBS (non-uniform rational
B-splines) space through the parametric coordinates,
which are previously calculated using an appropriate
inversion point algorithm.4,33 These parametric
coordinates are invariant throughout the optimiza-
tion, allowing to recalculate the spatial coordinates
at any time of the process. A second mapping is
performed on the cylinder geometry, by means of a
discrete uniform rasterization, in order to accurately
calculate the volume throughout the optimization.
This geometry mapping is done in parallel, independ-
ently of the computational grid and it is used for
handling the volume constraint within the optimiza-
tion process.

The cylinder is modeled as an extruded geometry
and the control points on both sides are moved sym-
metrically; so in total, eight design control points are
considered.

The mathematical definition that governs the
geometry deformation is

X ¼
X
i

X
j

BiðuÞBj ðvÞ � Cij ð1Þ

where X are the Cartesian coordinates, Cij are the
control points, B are the basis functions, and u and
v are the parametric coordinates. In this problem, the
basis functions in the chord direction correspond
to second-order Bernstein polynomials to the
interval [0,1]

B0 ¼ ð1� uÞ2, B1 ¼ 2uð1� uÞ, B2 ¼ u2 ð2Þ

while the vertical direction is represented by a linear
deformation, making the upper side and the lower
side independent. Bernstein polynomials provide
useful properties for aerodynamic design: basis func-
tions are symmetric Bi(t)¼Bn� i(1� t). The sum of
the basis function is always 1, so normalization is
not required. Each basis function has one single
unique maximum, which ensures the convergence
when calculating the parametric coordinates. Basis

functions are always positive; negative basis function
causes oscillations of the curvature, which is unde-
sired in aerodynamic design. For optimization prob-
lems, the maximum and minimum values are always
bounded; hence, the deformed geometry will always
remain contained inside the control box.

The volume of the deformed geometry is calculated
using the trapezoidal rule as

V ¼

Z

upperside

Xðu, vÞdx�

Z

lowerside

Xðu, vÞdx

�
X

lowerside

Xiþ1 þ X

2ðN� 1Þ
�

X
upperside

Xiþ1 þ X

2ðN� 1Þ

ð3Þ

where Xiþ 1 and Xi are consecutive points and N is the
number of points selected.

Selected SBO strategy

In this paper, the ‘‘intelligent estimation search with
sequential learning (IES-SL)’’ approach31 is used. The
IES-SL allows to perform a broad exploration of the
design space, by the use of an adaptive sampling
based on the objective function.34 Therefore, this
method specially explores those regions of the
design space where the optima are located. This
approach is illustrated in Figure 2.

One of the main characteristics of the approach is
the use of the surrogate model (SVMs in this paper) to
estimate the location of the optimum. The following
steps are performed:

1. First, an initial surrogate is built by using a
reduced database of high fidelity samples (in this
work, this initial database is composed of four
random geometries plus the baseline geometry).

2. The search is then applied over the surrogate,
which means that in each optimization iteration,
a new estimated optimum is returned (which is
also called ‘‘an intelligent guess’’35).

3. Then, the estimated optimum is computed using
the high fidelity CFD solver.

4. This new high fidelity value is incorporated to the
database, and the surrogate model is rebuilt.

Figure 1. Landing gear master cylinder (left, source: Walter tools, http://www.walter-tools.com). Parameterization of the cylinder:

2D (center) and 3D (right) views.
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5. A new optimization iteration starts on the new
surrogate and provides a new estimated optimum.
Then, the algorithm continues in step 3.

In this way, the sampling is directly focusing on
the objective function. The optimization algorithm
finishes when a certain number of iterations is
reached, and then, the optimum shape is the element
with the best parameters in the database.

In this paper, the specific details on the EA, SVMs
and objective function calculation with the DLR
TAU solver have not been included, but the reader
can consult the literature29–31,36,37 for the implemen-
tation details.

Within the proposed methodology, the EA ensures
that the global optimum is reached while the CFD
validation and surrogate reconstruction ensures the
approach accuracy.

Although, in the literature, there are other
approaches for the enhancement of the surrogate
model accuracy (i.e. see state-of-the-art methods in ear-
lier studies38–40), the presented approach is based on
SVMs for regression as the surrogate model technique,
and the main novelty is its application for aerodynamic
shape optimization. In fact, this is, to the authors’
knowledge, the first time that an SBO strategy (based
on SVMs) is applied to optimize the aerodynamic effi-
ciency starting from a simple ‘‘dummy’’ baseline geom-
etry. The aim is to validate the ability of the SBO
strategy to globally explore the design space within rea-
sonable timeframe (due to the replacement of the time-
consuming CFD tool by the SVM surrogate) while
maintaining the accuracy of the results (since the pro-
posed optimal of each iteration is validated with CFD).

Authors have previously validated the accuracy of
the SVM-based surrogate model showing mean
squared error values between 0.05 and 0.20, which
are considered acceptable for this application field.
The reader can consult the literature29,31 for more
details about the surrogate model validation. In add-
ition, authors also addressed the problem of designing
with high number of design variables starting from

configurations that are close to the optimal ones (for
instance, airfoils or wings where only small deform-
ations are expected). In this paper, for completeness
purposes, the authors aim to validate the feasibility of
the approach for optimizing where no clear know-
ledge about the starting point is provided (this is
why the proposed starting point is a clean cylinder)
and therefore large deformations are expected in
order to reach the optimum.

Application and numerical results

Test case definition

The approach is applied to the aerodynamic shape opti-
mization of a cylinder parametrized as shown in
Geometry parameterization section, with the problem
formulation defined in Table 1. The location of the
design parameters was previously displayed in
Figure 1. A symmetric movement of the upper and
lower face control points was imposed. The objective
function was to minimize drag while preserving, at
least, the 80% of the baseline volume, which was con-
sidered the minimum valid volume due to structural
requirements. This volume preservation was imple-
mented as a strong penalization of the objective func-
tion, which allows exploring the whole design space

Figure 2. Flowchart of the SBO process.

CFD: computational fluid dynamics; DB: database; EA: evolutionary algorithm; SVM: support vector machine.

TAU is the computational fluid dynamics code used (property of the German Aerospace Center, DLR).

Table 1. Problem formulation (the

Re reference length considered is

the cylinder diameter).

M Re

0.05 1245.22

0.1 2490.45

0.15 3735.67

0.2 4980.90

0.25 6226.13

0.3 7471.35

0.35 8716.58

0.4 9961.81
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even if several geometries will finally be discarded by
the optimization algorithm. Furthermore, design vari-
ables (DVs) are allowed to move �60% of their initial
value in both directions, horizontal and vertical.

The optimization study was performed for different
Mach numbers from 0.05 to 0.4, meaning a Reynolds
below 105 (Table 1), ensuring laminar boundary layer
separation conditions, as can be observed in Figure 3.41

This problem formulation allows using laminar flow
conditions; therefore, reducing the required computa-
tional cost (compared with turbulence Reynolds
Averaged Navier Stokes (RANS) modeling).

Drag minimization of a 3D cylinder
for different flow conditions

In this section, the approach is applied to the
drag minimization and results are displayed in
Tables 2 and 3. In particular, Table 2 shows the opti-
mization results regarding the whole objective func-
tion (which includes consideration of both drag and
volume values), where it can be seen that the total
reduction of the objective function was between

73% and 77% of its original value. Table 3 shows
the drag coefficient values of the original and opti-
mized geometries. It can be observed that the drag
was minimized between 92% and 94% of its original
value in the baseline geometry (depending on the
Mach number considered), while at the same time ful-
filling the constraints imposed in the volume.

From the abovementioned tables, it can be also
observed that the gain in the objective function (OF)
relative to the baseline tends to decrease with the
Mach number while, on the other hand, the improve-
ment in the drag coefficient tends to increase (see also
Figure 4). This behavior is explained because the opti-
mizer proposes thinner shapes as the Mach number
increases, producing a geometry with less drag, but
also less volume, which is penalized in its global OF.

In addition, Figure 5 shows the evolution of the
drag coefficient with the Mach number for the baseline
and optimized geometries. In this figure, the line
marked with diamonds shows the behavior of the base-
line geometry for differentMach numbers and it can be
observed how it reproduces well the linear behavior
displayed in Figure 3 for Reynolds numbers between
103 and 104, which correspond to the Mach numbers
range considered in this study, as indicated in Table 1.
Moreover, the line marked with squares shows the
behavior of the drag coefficient in case of the optimized
geometries for each of the Mach numbers considered.
It can be seen how the drag reduction increases with the
Mach number, except for Mach number 0.4, which
indicates that the transition region is close.

The optimized shapes returned by the optimizer are
displayed in Figure 6. For clarity, only the baseline
geometry and the optimized geometries for Mach
numbers 0.10, 0.20, 0.30 and 0.40 are shown. It can
be observed that all the optimized shapes are similar
except the one returned for Mach¼ 0.40, where the

Table 3. Optimization results (C-drag minimization).

M 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C-dragbaseline 0.95672 0.84988 0.80707 0.78708 0.77838 0.77638 0.77909 0.78578

C-dragoptim 0.06924 0.05842 0.05241 0.04957 0.04682 0.04490 0.04472 0.04570

C-dragoptim_p 0.05391 0.04875 0.04507 0.04353 0.04162 0.04033 0.04057 0.04189

C-dragoptim_v 0.01532 0.00967 0.00733 0.00604 0.00520 0.00457 0.00415 0.00381

%Improvement 92.76 93.13 93.51 93.70 93.98 94.22 94.26 94.18

Table 2. Optimization results.

M 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

OFbaseline 0.39248 0.30123 0.26356 0.24341 0.23173 0.22510 0.22124 0.21910

OFoptim 0.08918 0.07525 0.06751 0.06385 0.06031 0.05784 0.05740 0.05817

%Improvement 77.28 75.02 74.39 73.77 73.97 74.31 74.05 73.45

OF: objective function.

Figure 3. Drag coefficient versus Reynolds number for an

infinite circular cylinder (Tritton41).
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Figure 6. Comparison of baseline and optimal shapes for Mach numbers 0.10, 0.20, 0.30 and 0.40.

Figure 5. Evolution of the drag coefficients in the baseline and optimized geometries for the Mach numbers considered.

Figure 4. Percentage of improvement on the objective function and on the drag coefficient of the optimized geometries for each of

the Mach numbers considered.
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optimizer returns a geometry with a wider area near
the trailing edge, in order to ensure the volume con-
straint, even when it will affect the drag value.

The design parameters considered and their allow-
able movements are schematized in Figure 7. Notice
that the control point CP6 is moved symmetrically to
CP1 (only in x direction) and control points from CP7
to CP10 are moved symmetrically to control points
CP2–CP5 (only in z direction). That means, the move-
ment is in equal magnitude but in opposite direction.
In addition, the final values of the design parameters
for each of the optimized geometries are displayed in
Table 4 (the X and Z values for CP6–CP10 are not
included in this table for the reason explained before).

The computational grid used for this optimization
study had 100 superficial points and 7k points in total.
A total limit of 100 CFD simulations was established
for each flow condition. In Figure 8, the convergence
of the algorithm is shown (again, for clarity, only the
convergence for Mach numbers 0.10, 0.20, 0.30 and
0.40 is shown). It can be seen that the selected limit of
100 CFD runs is more than enough since the optimal

is reached around iteration number 20 for all flow
conditions. The population of the EA for each iter-
ation was 250 individuals. The total time, including
both training, optimization and simulation time (for
all the 100 iterations), was about 5 h using one pro-
cessor on a Linux x86_64 machine.

More interesting, the behavior of the proposed
optimization approach (combining SVM, CFD runs
and the EA) is displayed in Figure 9. This figure
shows the comparison of the OF values predicted by
the SVM and computed with the CFD tool for each of
the geometries returned in each of the optimization
iterations. Also note that the proposed approach
returns one geometry per optimization iteration, and
that this geometry is always validated with the CFD
tool and then used to enrich the surrogate as the opti-
mization evolves. Therefore, the figure includes 100
points (corresponding to each of the 100 geometries
from the 100 optimization iterations).

This figure provides two important conclusions:

. First, the use of the SVM-based surrogate does not
affect the accuracy of the optimized geometries,
since at the end of each iteration, the geometry
proposed by the EA is validated with the CFD
tool; therefore, the final optimized geometry will
be the same as if there were not any surrogate
involved in the process. In addition, since the sur-
rogate model is enriched in each of the iterations,
in the region close to the optima (see the zoom), the
accuracy of the predictions is very high (points are
near the line representing exact prediction).

. Second, the proposed approach explores the design
space following an optimization-based strategy,
which means that the interest is not to produce a
surrogate model able to accurately predict the
whole design space, but only the region where the
optima are located. Therefore, the infill criteria for
the surrogate is directly provided by the global
optimizer and the new samples are heavily concen-
trated in a certain region of the design space, as can
be also observed in the figure. It is important to
notice that the first five points (represented by

Table 4. Geometric variables (X and Z coordinate values) of each control point for the baseline and optimized geometries.

X1 X2 Z2 X3 Z3 X4 Z4 X5 Z5

Baseline 0.50 0.50 0.20 0.16 0.55 �0.16 0.55 �0.50 0.20

Opt_M0.05 0.89 0.62 0.13 0.20 0.06 �0.20 0.06 �0.60 0.13

Opt_M0.10 0.89 0.60 0.13 0.18 0.06 �0.18 0.06 �0.60 0.13

Opt_M0.15 0.89 0.61 0.13 0.17 0.06 �0.18 0.06 �0.60 0.13

Opt_M0.20 0.89 0.61 0.13 0.18 0.07 �0.18 0.06 �0.60 0.13

Opt_M0.25 0.89 0.89 0.13 0.17 0.06 �0.18 0.06 �0.60 0.13

Opt_M0.30 0.89 0.60 0.13 0.17 0.06 �0.20 0.06 �0.60 0.13

Opt_M0.35 0.89 0.67 0.13 0.18 0.06 �0.19 0.06 �0.60 0.13

Opt_M0.40 0.89 0.78 0.13 0.20 0.06 �0.18 0.06 �0.60 0.13

Figure 7. Control points considered in the parameterization

and their allowable movements during the optimization.
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circles) correspond to the baseline geometry and
the four samples generated randomly (as was
explained in SBO strategy section) in order to
build the first surrogate. Then, the rest of the
points displayed are divided in two sets: the squares
represent the samples produced by the first 20 iter-
ations of the optimization algorithm (where an
acceptable level of convergence is already reached)
and the triangles represent the geometries returned
in the rest of the iterations. As expected, this
approach tends to concentrate more samples in a
certain region of the design space (close to the
optima) with the evolution of the optimization
iterations.

Finally, Figure 10 shows the Mach number con-
tours of the original (left) and optimized (right) geo-
metries for each of the Mach numbers considered in
the range [0.05, 0.4]. As expected, a pair of vortices
(bigger with the Mach number) appears downstream
of the baseline geometry. In the optimized shapes, the
cross-sectional area has been reduced as much as the
geometric and volume constraints allows. This
explains the vortices disappearance and the drag
reduction, as expected from the aerodynamic point
of view. Some small asymmetric effects can be seen
in the Mach contours of the optimized geometries,
which are due to volume grid deformation since the
geometric surface deformation has to be propagated

Figure 9. OF values (computed with CFD and SVM) for each of the geometries returned in each of the optimization iterations

(a total of 100 geometries are plotted, since 100 optimization iterations were executed).

This plot corresponds to the optimization case for Mach¼ 0.20 but the behavior for the other optimization is similar.

Figure 8. Objective function convergence history.
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Figure 10. Mach contours and velocity streamlines of the baseline and optimized geometries for different Mach numbers from

0.05 to 0.4.

Andrés-Pérez et al. 9



to the volume. However, its effect in the accuracy of
the solutions is negligible since the quality of the grid
elements was checked and showed adequate values.

Conclusions and future
research activities

This article presented the application of a global opti-
mization strategy using the IES-SL and the hybridiza-
tion of EA and SVMs to the aerodynamic shape
optimization of a clean cylinder representing a
simple model of the landing gear master cylinder.
The aim of this work was to demonstrate the feasibil-
ity of the proposed technique to reach optimal con-
figurations that are far from the baseline geometry.

The applied approach is able to broadly explore the
design space without being dependent on the initial

solution. In addition, the approach avoids an exten-
sive use of expensive CFD computations, since it
makes use of a metamodel, based on SVMs, to pro-
vide an estimate of the aerodynamic coefficients.
Finally, with this approach, the accuracy is ensured,
since in each iteration, the result is computed with the
high fidelity CFD tool.

The obtained results demonstrated that the
approach is able to behave well in the drag minimiza-
tion of the selected test case, providing optimal con-
figurations in an affordable time framework.
However, one of the main detected problems when
applying this optimization is the mesh deformation,
since certain large displacements are produced, which
could lead to negative mesh elements. Remeshing may
be an option in case of the mentioned large displace-
ments, although its associated computational cost,

Figure 10. Continued.
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and in some cases the need of human interaction, does
not make it the desirable option within an automatic
optimization framework for complex configurations.
Authors’ research will focus on this issue and future
work will be also dedicated to exploit the results in
industry, for the selected test case (landing gear
master cylinder), considering further constraints and
also including structural aspects that have to be taken
into consideration. Another possibility is to use a
thickness constraint equal to the diameter of the base-
line cylinder for the central control points. In this
way, the resulting optimal shape could be used as a
‘‘landing-gear fairing’’, with the underlying cylindrical
structure unchanged. This will be also analyzed in
future work in order to exploit the industrial applic-
ability of the obtained results.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of
this article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

References

1. ACARE Advisory Council for Aeronautics Research in
Europe. Aeronautics and air transport: beyond vision

2020 (towards 2050). Report, ACARE, Publications
Office of the European Union, Luxembourg, 2011.
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