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Summary 

This work presents a summary of the results obtained during the activities developed within the GARTEUR AD/AG-52 

group. GARTEUR stands for “Group for Aeronautical Research and Technology in Europe” and is a multinational 

organization that performs high quality, collaborative, precompetitive research in the field of aeronautics to improve 

technological competence of the European Aerospace Industry. The aim of the AG52 group was to make an evaluation and 

assessment of surrogate-based global optimization methods for aerodynamic shape design of aeronautical configurations. The 

structure of the paper is as follows: Section 1 will introduce the state-of-the-art in surrogate-based optimization for 

aerodynamic design and section 2 will detail the test cases selected in the AG52 group. Optimization results will be then 

presented in section 3, and conclusions will be provided in the last section. 

Keywords: aerodynamic shape design, evolutionary optimization, computational fluid dynamics, surrogate-based optimization, 

surrogate modelling. 
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1 Introduction 

The AD/AG 52 has been established to explore and unveil 

the potential of surrogate-based techniques in aerodynamic 

shape optimization. Any designer has experienced the burden 

of intensive numerical optimization involving CFD or 

analogous expensive black-box simulations. Typically, the 

computational load is easily tolerated when dealing with two-

dimensional airfoil shape design. However, the order of 

magnitude of both the number of simulations required and the 

CPU time for single evaluation grows significantly with 

increasing dimensionality (e.g, from two-dimensional to 

three-dimensional cases) and geometric complexity (e.g., 

wing-fuselage configuration, high-lift cases, wing-pylon-

engine installation). Surrogate models are able to 

complement, not to replace, the “true” function evaluation by 

providing a fast and adaptive response during screening 

parametric analyses and numerical optimization. Building and 

querying a surrogate is a way to potentially acquire new 

information about the problem under analysis, not to directly 

solve it: indeed, any surrogate, even the most sophisticated 

ones, have to address prediction error and minimize it in order 

to be accurate. This does not hamper the usefulness of the 

approach as, even in presence of errors away from the 

sampled data, function trends and optimization directions can 

be derived to enrich the process. 

 

The main objective of this Action Group was to make a 

comprehensive evaluation and assessment of surrogate-based 

global optimization methods for aerodynamic shape 

optimization.  

 

The work structure for this AG is application-driven, and 

it was composed of two tasks. First, in Task 1, two common 

test cases were proposed and addressed by all partners using 

different methods. The aim was to make an exhaustive 

comparison of promising methods and to quantify their 

performance in terms of accuracy and CPU cost. Then, in 

Task 2, more industry-relevant test cases were provided, and 

the consortium used the knowledge acquired in task 1, to 

solve such test cases. 

1.1. State-of-art 

Global search methods are traditionally based on 

stochastic optimization techniques; most of them are 

population-based whereas there are few individual-based 

algorithms. The most commonly used population-based 

methods are the Evolutionary Algorithms (EAs; including 

Genetic Algorithms-GAs and Evolution Strategies-ES). 

However, other alternatives exist, such as Particle Swarm 

Optimization (PSO) [1], Bacterial Foraging Optimization 

(BFO) [2] and Differential Evolution (DE) [3]. Evolutionary 

Algorithms (EAs) [4] are successful single and multi-

objective constrained optimization methods that can handle 

any kind of objective function and may accommodate any 

evaluation software as a black-box tool. Due to the high and 

expensive number of required calls, EAs assisted by surrogate 

evaluation models (metamodels) have been devised and, 

depending on the training method, they can be classified as 

off-line trained metamodels [5, 6, 7], or on-line trained 

metamodels [8, 9, 10, 11]. 

 

There are different many types of surrogate modelling 

approaches, including Polynomial Regression (PR), 

Multivariate Adaptive Regression Splines (MARS), Gaussian 

Processes, Kriging (KG), Co-kriging [12], Artificial Neural 

Networks (ANN) [13, 14], Radial Basis Functions (RBF) 

[15], Proper Orthogonal Decomposition (POD) methods [16] 

and Support Vector Machines (SVM) [17, 18]. A reference 

for recent advances in surrogate based optimization 

techniques can be found in [19], and comparison of surrogate 

models for turbomachinery design in [20]. Also, surrogate 

modelling has been already applied for the design 

optimization of composite aircraft fuselage panels [21]. In 

addition, the use of Kriging surrogate modelling in 

combination with Evolutionary Algorithms has been recently 

applied for the design of hypersonic vehicles [22]. 

Furthermore, the use of Support Vector Regression 

algorithms (SVMr) as metamodels has been applied to a large 

variety of regression problems, frequently combined with 

evolutionary computation algorithms [23-26]. 

 

Current research focuses on the improvement of 

metamodels (by using Artificial Neural Networks, Gaussian 

models, etc, or proposing metamodels variants [27] based on 

not only the responses but also the gradient of 

responses,Kriging) and/or different metamodel 

implementation schemes within the Metamodel-Assisted 

Evolutionary algorithm (MAEA) [28]. Particular attention is 

required in multi-objective optimization problems, where a 

Pareto front of non-dominated solutions is sought and the 

evolving individuals are dispersed in the design space, or 

when asynchronous MAEAs [29, 30] are devised by 

overcoming the notion of generation and the corresponding 

synchronization barrier. 

 

With respect to the combination of global and local search 

methods within the design optimization process, the so-called 

hierarchical approach has been proposed in the literature (for 

instance, stochastic methods for the exhaustive search of the 

design space along with gradient-based methods for the 

refinement of promising solutions) [31, 32]. Metamodel-

assisted memetic algorithms [30] are also hybrid schemes that 

combine the use of global and local optimization methods 

[33-35]. 

2 Definition of common test cases & methods 

Two test cases were selected to assess and compare 

methods: the RAE2822 airfoil and the Drag Prediction 

Workshop (DPW) W1 wing. The first is two-dimensional and 

it has been widely studied in the aerospace community over 

the last few decades; a large amount of both experimental and 

computational data exists, together with optimization results 
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generated by a variety of methodologies. Transonic viscous 

flow conditions were considered for this test case. 

The second test case was taken as the DPW-W1 wing 

which has been proposed during the 3rd AIAA Drag Pre-

diction Workshop [37]: it is a quite simple wing geometry 

that can be easily handled in an optimization context. Again, 

experimental and computational data are available for 

comparison. Transonic viscous flow conditions were also 

considered. 

2.1. RAE2822 airfoil  

The RAE 2822 airfoil [36] had been selected as the initial 

geometry for aerodynamic optimizations. The airfoil contour 

shape is shown in Figure 1 and Table 1 summarizes its 

geometrical characteristics. 

Fig. 1. RAE2822 baseline geometry 

 

Table 1. Baseline airfoil features 

Chord [m] 0.61 

Maximum thickness-to-chord ratio 0.121 @ 𝑥/𝑐 = 0.38 

Maximum camber-to-chord ratio 0.0126 @ 𝑥/𝑐 = 0.76 

Leading edge radius [m] 0.00827 

Airfoil area [m2] 0.0776 

Trailing edge angle 9° 

 
The flow conditions and constraints of different design 

points were the inputs for the optimization process. These 

flow conditions included prescribed angle of attack (AoA), 

Mach number, Reynolds number as follows: 

 DP1 (Case 9):   𝑀 = 0.734, 𝑅𝑒 = 6.5 · 106, 𝐴𝑜𝐴 = 2.65° 

 DP2 (Case 10): 𝑀 = 0.754, 𝑅𝑒 = 6.2 · 106, 𝐴𝑜𝐴 = 2.65° 

 

The objective function defined was to maximize lift over 

drag ratio at both the design points, while maintaining some 

specified constraints. 

 

The aerodynamic constraints and penalties considered were: 

 

i. Prescribed minimum lift coefficient:    

𝐶𝑙
0|𝑘: 𝐶𝑙|𝑘 ≥ 𝐶𝑙

0|𝑘   

ii. Prescribed minimum pitching moment coefficient 

𝐶𝑚
0 |𝑘: 𝐶𝑚|𝑘 ≥ 𝐶𝑚

0 |𝑘 ,  where 𝐶𝑙
0|𝑘and 𝐶𝑚

0 |𝑘  are 

the lift and pitching moment coefficients,  

respectively, of the initial geometry, for the 

design point k. 

iii. Drag penalty: if the constraint on minimum 

pitching moment is not satisfied, the penalty will 

be 1 drag count per 0.01 in  ∆𝐶𝑚. 

while the geometric constraints were: 

 

i. Prescribed maximum thickness ratio: 

(t c⁄ )max: max(t c⁄ ) = (t c⁄ )max 

ii. Prescribed minimum thickness ratio (t c⁄ )min
80  at 

x = 0.8c: (t c⁄ )80 ≥ (t c⁄ )min
80  

iii. Prescribed minimum leading edge nose radius 

Rmin
le  : Rle ≥ Rmin

le  

The RAE2822 was parameterized by a volumetric 

NURBS. Figure 2 shows the parameterization coloured green, 

with the control points marked in red. The selected 

parameterization is a 3D control box with 2 control points in 

direction u (fake 3D grid), 10 in direction v and 5 in direction 

w. There are 14 design variables used during optimization. 

 

Fig. 2. NURBS control box.  

 

2.2. DPW wing  

The DPW-W1 wing [37] [38] was selected as the initial 

geometry for aerodynamic optimizations. Reference 

quantities for this wing are given in Table 2, while Figure 3 

presents the geometry 

Table 2.  Reference quantities for the DPW wing 

𝑆𝑟𝑒𝑓 (wing reference area) 290322 𝑚𝑚2 

𝐶𝑟𝑒𝑓  (wing reference chord) 197.55 𝑚𝑚 

𝑋𝑟𝑒𝑓 154.24 𝑚𝑚 (from the wing root l.e.) 

b/2 (semi-span) 762 𝑚𝑚 

AR  (aspect ratio, AR = 𝑏2/𝑆𝑟𝑒𝑓 ) 8.0  

The flow conditions and constraints of different design 

points were the inputs for the optimization process. These 

flow conditions included prescribed cruise lift, Mach number, 

Reynolds number as follows: 

 𝑀 = 0.76, 𝐶𝐿 = 0.5, 𝑅𝑒 = 5 · 106 DP1 (main design 

point) 

 𝑀 = 0.78, 𝐶𝐿 = 0.5, 𝑅𝑒 = 5 · 106 DP2 (high-Mach design 

point) 
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The design goal was to achieve a geometry with the 

minimum drag, while maintaining some specified 

aerodynamic and geometric constraints. 

 
In this case, the aerodynamic constraints and penalties 

were: 

 

i. Prescribed constant lift coefficient:                              

𝐶𝐿
0 →  𝐶𝐿(𝑘) = 𝐶𝐿

0(𝑘)          

ii. Minimum pitching moment:  𝐶𝑀
0 → 𝐶𝑀(𝑘) ≥ 𝐶𝑀

0 (𝑘)        
𝐶𝐿

0(𝑘) and 𝐶𝑀
0 (𝑘) are the lift and pitching moment 

coefficients, respectively, of the initial geometry, for 

the design point 𝑘. 

iii. Drag penalty: if constraint in minimum pitching 

moment is not satisfied, the penalty will be 1 drag 

count per 0.01 in ∆𝐶𝑀 

 

while the geometric constraints were: 

 

i. Wing sections maximum thickness constraints: 

(𝑡/𝑐)𝑠𝑒𝑐𝑡𝑖𝑜𝑛 ≥ (𝑡/𝑐)𝑠𝑒𝑐𝑡𝑖𝑜𝑛
0  

where (𝑡/𝑐)𝑠𝑒𝑐𝑡𝑖𝑜𝑛
0  is the maximum thickness for the 

original wing sections at the root, mid-span and tip: 

(𝑡/𝑐)𝑟𝑜𝑜𝑡
0 = (𝑡/𝑐)𝑚𝑖𝑑−𝑠𝑝𝑎𝑛

0 = (𝑡/𝑐)𝑡𝑖𝑝
0 = 13.5%. 

Therefore, the maximum thickness for the optimized 

wing sections should be greater or equal than 13.5%. 

ii. Spar constraints: First, two locations (x/c) are 

defined to represent the spar positions: 

(𝑥 𝑐⁄ )𝑟𝑜𝑜𝑡,1 = (𝑥 𝑐⁄ )𝑚𝑖𝑑−𝑠𝑝𝑎𝑛,1 = (𝑥 𝑐⁄ )𝑡𝑖𝑝,1 = 0.20 

(𝑥/𝑐)𝑟𝑜𝑜𝑡,2 = (𝑥/𝑐)𝑚𝑖𝑑−𝑠𝑝𝑎𝑛,2 = (𝑥/𝑐)𝑡𝑖𝑝,2 = 0.75 

Then, the thickness value of the original wing 

sections at these locations are defined by: 

(𝑡 𝑐⁄ )𝑟𝑜𝑜𝑡,1
0 = (𝑡 𝑐⁄ )𝑚𝑖𝑑−𝑠𝑝𝑎𝑛,1

0 = (𝑡 𝑐⁄ )𝑡𝑖𝑝,1
0 = 12% 

(𝑡/𝑐)𝑟𝑜𝑜𝑡,2
0 = (𝑡/𝑐)𝑚𝑖𝑑−𝑠𝑝𝑎𝑛,2

0 = (𝑡/𝑐)𝑡𝑖𝑝,2
0 = 5.9% 

The parameterization defined for task 2 is depicted in 

Figure 4. The DPW wing was parameterized by a 3D control 

box with 5 control points in direction u, 10 in direction v and 

5 in direction w. The parametric u direction corresponds to 

the y axis, the v direction to the x axis, and the w direction to 

the z axis. The 36 design variables to be modified are the 

control points in the w direction.  

Fig. 3 . Planform plot (left) and 3D plot (right) of the initial DPW-W1 

wing geometry 

  

 

Fig. 4. DPW-W1 geometric parameterization 

 
 

2.3. Applied approaches  

The surrogate models employed by the partners are 

listed in Table 3. 

 
Table. 3.  Summary of test cases in Task 1&2, with contributing partners 

and methods used 

 
TC1.1 RAE2822 airfoil 

(RANS) 

 

TC1.2 DPW-W1  

wing (Euler) 

 

TC1.2 DPW-W1  

wing (RANS) 

 

INTA/UAH SVMs SVMs SVMs 

VUT ANNs - - 

CIRA POD/RBF, Kriging/EGO - POD/RBF 

FOI Kriging,  RBF - - 

ONERA Kriging - - 

UNIS Ensemble - - 

Airbus-M - - HOSVD 

 

 

3 Optimization results 

3.1. Task 1 RAE2822 RANS  

Partner’s optimized shapes are depicted in Figure 5. The 

objective function values obtained for each geometry after the cross 

validation with several solvers are summarized in Table 4. 

Table. 4. Average value of the Objective Function (OF) values for 

RAE2822 in viscous flow conditions optimization 

 

Mean 

OF (TAU, MSES, ZEN 3 

levels) 

Mean OF 

(only TAU and ZEN 

fine) 

RAE 2822 baseline 1 1 

CIRA-POD 0.6223 0.6266 

CIRA-EGO 0.6208 0.6236 

INTA/UAH 0.6243 0.6211 

ONERA 0.6359 0.6495 

UNIS 0.6367 0.6338 

VUT 0.6969 0.7063 
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Fig. 5. Comparison of partner’s optimized geometries and baseline 

RAE2822 

 

 
 

3.2. Task 2 DPW-W1 RANS  

Partner’s optimized shapes at 25%, 50% and 75% wing 

semi-span are depicted in Figure 6. The objective function 

values obtained for each geometry after the cross validation 

with several solvers are summarized in Table 5. 
 

Table.5. Results of cross-analysis of the optimized geometries ZEN and 

TAU solvers. 

Geometry Solver 

      

OF 
𝑪𝑳 𝑪𝑫 𝑪𝑴 𝑪𝑳 𝑪𝑫 𝑪𝑴 

DPW w1 ZEN 0.5 0.0237 -0.069 0.5 0.0264 -0.078 1 

DPW w1 TAU 0.5 0.0237 -0.067 0.5 0.0267 -0.070 1 

CIRA ZEN 0.5 0.0224 -0.084 0.5 0.0232 -0.089 0.91 

CIRA TAU 0.5 0.0221 -0.075 0.5 0.0233 -0.079 0.91 

INTA/UAH ZEN 0.5 0.0235 -0.084 0.5 0.0241 -0.091 0.96 

INTA/UAH TAU 0.5 0.0231 -0.074 0.5 0.0248 -0.077 0.94 

AIRBUS-M TAU 0.5 0.0231 -0.090 0.5 0.0238 -0.078 0.92 

Fig. 6. Comparison of partner’s optimized geometries and baseline 

DPW-W1 at 25%, 50% and 75% wing semi-span. 

 

 

 
 

4 Conclusions 

This paper summarized the results of the GARTEUR 

AD/AG52 group on “Surrogate-based global optimization 

methods for aerodynamic design”. 

 

Surrogate-based global optimization has been 

demonstrated to be feasible for aerodynamic design where 

there is a high number of design variables (up to 36 design 

variables used during optimization). 

 

However, the accuracy of the surrogate models strongly 

depends on the sampling and the objective of the surrogate: 

- If the objective is to provide general predictions, an 

a-priori LHS sampling in combination or not with 

Lola-Voronoi sampling seems to be a good option.  

- If the objective is to better predict those regions of 

the design space where the optimum is located, then 

a mixed a-priori and adaptive sampling is 

recommended. 

 

In case of optimization best results were achieved by the 

adaptive POD with RBF interpolation, HOSVD-based and 

SVMr optimization approaches.  
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Interested readers can consult the complete AG52 report in 

www.garteur.org.  
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