Reconstrucción de la vía aérea principal mediante el uso de prótesis sintéticas integrables

  1. J.L. López Villalobos 1
  2. N. Moreno Mata 1
  3. L. Arrollo Pareja 1
  4. L. Gómez Izquierdo 2
  5. F. García Gómez 1
  6. S. Pardo Prieto 1
  7. R. Barroso Peñalver 1
  8. F.J. de la Cruz Lozano 1
  9. A.I. Blanco Orozco 1
  1. 1 Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Cirugía Torácica, Hospital Universitario Virgen del Rocío
  2. 2 Servicio de Anatomía Patológica, Hospital Universitario Virgen del Rocío
Journal:
Revista española de patología torácica

ISSN: 1889-7347

Year of publication: 2017

Volume: 29

Issue: 3

Pages: 179-187

Type: Article

More publications in: Revista española de patología torácica

Abstract

One of the main problems arising from the surgical treatment of tracheal lesions is the existing limitation in the length of segment that can be resected.Currently, a maximum of 50% of the trachea can be safely removed.More extensive lesions cannot benefit from this treatment and alternative techniques must be used, which are palliative in most cases.The interposition of an element which substitutes the segment of resected trachea is a possible solution for this problem. An experimental animal study has been conducted, substituting tracheal segments varying in length with cylindrical polytetrafluoroethylene prostheses. Later, a follow-up was done and the animals were sacrificed to study histological changes. The results show the technical possibility of substituting the airway with segments of prosthetic material.In the monitoring of the animals, there seems to be a direct relationship between the length of the implant and the appearance of tracheal stenosis at the implant site, both in the macroscopic morphological studies and the studies completed with optical microscopy. However, for the time being, perioperative mortality is high and, although it can be attributed to the learning curve, applying the results to possible clinical practice is not recommended.

Bibliographic References

  • Hisamatsu C, Maeda K, Tanaka H et al. Transplantation of the cryopreserved tra-cheal allograft in growing rabbits: effect of immunosuppressant. Pediatr Surg Int 2006; 22 (11): 881-885.
  • Schrepfer S, Deuse T, Sydow K et al. Tracheal allograft transplantation in rats: the role of different immunosuppressants on preservation of respiratory epithelium. Trans-plant Proc 2006; 38 (3): 741-744.
  • Gubbels SP, Richardson M, Trune D et al. Tracheal reconstruction with porcine small intestine submucosa in a rabbit model. Otolaryngol Head Neck Surg 2006; 134 (6): 1028-1035.
  • Okumus A, Cizmeci O, Kabakas F et al. Circumferential trachea reconstruction with a prefabricated axial bio-synthetic flap: experimental study. Int J Pediatr Otorhinolaryn-gol 2005; 69 (3): 335-344.
  • Martinod E, Seguina A, Pfeuty K et al. Long-term evaluation of the replacement of the trachea with an autologous aortic graft. Ann Thorac Surg 2003; 75 (5): 1572-1578.
  • Azorin JF, Bertin F, Martinod E et al. Tracheal replacement with an aortic autograft. Eur J Cardiothorac Surg 2006; 29 (2): 261-263.
  • Feito BA, Rath AM, Kambouchner M et al. Replacement of a Tracheal Segment by a Mixed Graft (Aorta and Prosthesis): an Experimental Study in Rabbits. Eur J Surg 1999; 165: 1175–1181.
  • Macchiarini P, Jungebluth P, Go T et al. Clinical transplantation of a tissue-engineered airway. Lancet 2008; 13 (372): 2023-2030.
  • Shin YS, Choi JW, Park JK et al. Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold. Ann Biomed Eng 2015; 43 (4): 1003-1013.
  • Dikina AD, Strobel HA, Lai BP et al. Engineered cartilaginous tubes for tracheal tissue replacement via self-assembly and fusion of human mesenchymal stem cell con-structs. Biomaterials 2015; 52: 452-462.
  • Schultz P, Vaultier D, Charpiot A et al. Development of tracheal prostheses made of porous titanium: a study on sheep. Eur Arch Otorhinolaryngol 2007; 264 (4): 433-438.
  • Sotres-Vega A, Villalba-Caloca J, Jasso-Victoria R et al Cryopreserved tracheal grafts: a review of the literature. J Invest Surg 2006; 19 (2): 125-135.
  • Walluscheck KP, Bierkandt S, Brandt M et al. Infrainguinal ePTFE vascular graft with bioactive surface heparin bonding- first clinical results. Journal of Cardiovascular Surgery 2005; 46 (4): 425-430.
  • Muñoz JA, Barbeito J, De los Ríos F et al. ¿Es viable un segmento traqueal autoin-jertado sin pedículo vascular? Modelo experimental en conejos. Rev HUcba 2007; I (3): 7-13.
  • Muñoz JA, Barbeito J, De los Ríos F et al. ¿Es viable un segmento traqueal autoin-jertado sin pedículo vascular? Modelo experimental en conejos. Rev HUcba 2007; I (3): 7-13.
  • Acocella F, Brizzola S, Valtolina C et al. Prefabricated tracheal prosthesis with partial biodegradable materials: a surgical and tissue engineering evaluation in vivo.” Journal of biomaterials science. Polymer edition 18.5 (2007): 579.
  • Chopra D P, Kern R C, Mathieu P A et al. Successful in vitro growth of human res-piratory epithelium on a tracheal prosthesis. The Laryngoscope 1992; 102 (5): 528.
  • Sittinger M, Reitzel D, Hierlemann H et al. Reabsorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. Biomed Mater Res 1996; 33 (2): 57-63.
  • Hickey M J, Wilson Y, Hurley J V et al. Mode of vascularization of control and basic fibroblast growth factor-stimulated prefabricated skin flaps. Plast Reconstr Surg 1998; 101 (5): 1296 - 1304.
  • González R, Fugate K, McCluscky D 3rd et al. Relationship between tissue in-growth and mesh contraction. World J Surg 2005; 29 (8): 1038 -1043.
  • Klinge U, Park JK, Klosterhalfen B. “The ideal mesh?”. Pathobiology 2013; 80 (4): 169 -175.