Azotobacter vinelandii nitrogenase“Kinetics of nif gene expression and insights into the roles of FdxN and NifQ in FeMo-co biosynthesis”

  1. Jiménez Vicente, Emilio
Supervised by:
  1. Luis M. Rubio Herrero Director

Defence university: Universidad Politécnica de Madrid

Fecha de defensa: 22 September 2014

Committee:
  1. Juan Imperial Ródenas Chair
  2. José Manuel Palacios Alberti Secretary
  3. Abraham Esteve Núñez Committee member
  4. Enrique Flores García Committee member
  5. Antonia Herrero Moreno Committee member

Type: Thesis

Abstract

The Molybdenum-nitrogenase is responsible for most biological nitrogen fixation activity (BNF) in the biosphere. Due to its great agronomical importance, it has been the subject of profound genetic and biochemical studies. The Mo nitrogenase carries at its active site a unique iron-molybdenum cofactor (FeMoco) that consists of an inorganic 7 Fe, 1 Mo, 1 C, 9 S core coordinated to the organic acid homocitrate. Biosynthesis of FeMo-co occurs outside nitrogenase through a complex and highly regulated pathway involving proteins acting as molecular scaffolds, metallocluster carriers or enzymes that provide substrates in appropriate chemical forms. Specific expression regulatory factors tightly control the accumulation levels of all these other components. Insertion of FeMo-co into a P-cluster containing apo-NifDK polypeptide results in nitrogenase reconstitution. Investigation of FeMo-co biosynthesis has uncovered new radical chemistry reactions and new roles for Fe-S clusters in biology.