Charge-coupled device readout by digital-correlated double sampling
- Cruz de la Torre, Carlos
- Vicente, Juan de
ISSN: 2813-8031
Year of publication: 2024
Volume: 2
Pages: 11
Type: Article
More publications in: Frontiers in Detector Science and Technology
Abstract
Charge-coupled devices (CCDs) play crucial roles in astronomy owing to their widespread use in the optical band, offering high sensibility, low noise, high dynamic range, and high spatial resolution. Recent advancements in CCDs have focused on improving the sub-electron noise levels for particle detection and enhancing readout speeds through simulation studies. The main objective of this study is to replace the analog processing of CCD signals using the digital-correlated double sampling (DCDS) technique. DCDS allows post-acquisition noise correction through intermittent sampling of an internal reference voltage to provide compact and flexible performance. In this study, DCDS was evaluated using two digital processing systems, namely, a 2.5 mega-samples per second (MSPS) 24-bit analog-to-digital converter (ADC) board and a 250 MSPS 16-bit ADC field-programmable-gate-array( FPGA)-based buffer memory board. The readout noise value at 74 kpix/s (7.1 e) was a significant improvement over that obtained with analog processing (9.7 e). The DCDS implementation demonstrates optimal signal-to-noise ratio for a wide range of readout speeds. Parameters such as the sample positions per pixel, number of samples, and number of pixels were identified to be essential in achieving an accurate gain value. Finally, hardware implementation of the DCDS IP core algorithm on a Xilinx Zynq-7000 AP system-on-a-chip (SoC) showed a significant improvement in power dissipation (7.1 W) compared to the analog Monsoon correlated double sample (CDS) circuit (13.6 W). The DCDS IP core implementation also showed a background noise reduction of up to 34% compared to DCDS offline readout processing using a Python algorithm.
Bibliographic References
- Alessandri, (2015), Mon. Notices R. Astronomical Soc., 455, pp. 1443, 10.1093/mnras/stv2410
- Altaf, (2015), IEICE Electron. Express, 12, pp. 20150214, 10.1587/elex.12.20150214
- High speed converter evaluation platform Analog Devices 2024
- Bessia, (2023), IEEE Trans. Circuits Syst. I Regul. Pap., 70, pp. 2306, 10.1109/tcsi.2023.3256860
- Bourgeois, (2017), 2017 Joint conference of the European frequency and time forum and IEEE international frequency control symposium (EFTF/IFCS), pp. 578, 10.1109/FCS.2017.8088963
- Carminati, (2024), Handbook of X-ray and gamma-ray astrophysics, pp. 1851, 10.1007/978-981-19-6960-7_51
- Casas, (2012), High Energy Opt. Infrared Detect. Astronomy V (SPIE), 8453, pp. 650, 10.1117/12.924640
- Casas, (2014), SPIE Proc., 9147, pp. 91472R, 10.1117/12.2054717
- Cho, (2023), Sensors, 23, pp. 1031, 10.3390/s23021031
- Clapp, (2012), SPIE Proc., 8453, pp. 84531D, 10.1117/12.925393
- Clapp, (2016), SPIE Proc., 9915, pp. 99151S, 10.1117/12.2231619
- Clapp, (2017), Int. Conf. Space Optics—ICSO 2016 (SPIE), 10562, pp. 142, 10.1117/12.2296146
- Coln, (2020), U. S. Pat., 10, pp. 792
- Cruz, (2018), High Energy, Opt. Infrared Detect. Astronomy VIII (SPIE), 10709, pp. 504, 10.1117/12.2312498
- Dobrev, (2020), 2020 XXIX international scientific conference electronics ET, pp. 1
- Drlica-Wagner, (2020), X-ray, optical, and infrared detectors for astronomy IX, 10.1117/12.2562403
- Duan, (2021), Res. Astronomy Astrophysics, 21, pp. 013, 10.1088/1674-4527/21/1/13
- Gach, (2003), Publ. Astronomical Soc. Pac., 115, pp. 1068, 10.1086/377082
- Howell, (2000), Handbook of CCD astronomy
- Jakob, (2007), 10th euromicro conference on digital system design architectures, methods and tools (DSD 2007), pp. 35, 10.1109/DSD.2007.4341447
- Janesick, (2007), Photon transfer, 10.1117/3.725073
- Janesick, (1987), Opt. Eng., 26, pp. 692, 10.1117/12.7974139
- Jiang, (2013), Proc. 2013 Int. Conf. Adv. Comput. Sci. Electron. Inf., 10.2991/ICACSEI.2013.66
- Jiménez, (2012), SPIE Proc., 8446, pp. 84466N, 10.1117/12.924883
- Jiménez, (2016), Ground-based Airborne Instrum. Astronomy VI (SPIE), 9908, pp. 1443
- Jridi, (2017), SPIE Proc., 10203, pp. 102030N, 10.1117/12.2264715
- Juramy, (2014), SPIE Proc., 9154, pp. 91541P, 10.1117/12.2055175
- Liu, (2015), Chin. Phys. C, 39, pp. 076101, 10.1088/1674-1137/39/7/076101
- Moroni, (2020), IEEE Trans. Instrum. Meas., 69, pp. 7580, 10.1109/tim.2020.2980461
- Paul, (2022), 2022 IEEE biomedical circuits and systems conference BioCAS, pp. 149, 10.1109/BioCAS54905.2022.9948618
- Teledyne e2v ccd. delivery specification sheet PhotonicsH. 2024
- Scuderi, (2023), arXiv Prepr. arXiv:2302.10546, 10.48550/arXiv.2302.10546
- Smith, (2013), Proc. SDW2013, 10.1117/12.2232393
- Stefanov, (2015), J. Instrum., 10, pp. P04003, 10.1088/1748-0221/10/04/p04003
- Tulloch, (2016), SPIE Proc., 9915, pp. 991530, 10.1117/12.2240405
- Weatherill, (2019), J. Astronomical Telesc. Instrum. Syst., 5, pp. 1, 10.1117/1.jatis.5.4.041502
- Zynq-7000 soc zc706 evaluation kit XilinxA. 2024
- Yao, (2023), Third Int. Conf. Opt. Image Process. (ICOIP 2023) (SPIE), 12747, pp. 447, 10.1117/12.2689203
- Zou, (2019), Analog Integr. Circuits Signal Process., 101, pp. 449, 10.1007/s10470-019-01533-8