Inflamación, activación del endotelio vascular y trombosis

  1. Prieto Martín, A. 1
  2. A. Pérez Gómez 2
  3. A.M. Gómez Lahoz 1
  4. J. Barbarroja Escudero 2
  1. 1 Departamento de Medicina y Especialidades Médicas. Universidad de Alcalá. Alcalá de Henares. Madrid. España
  2. 2 Departamento de Medicina y Especialidades Médicas. Universidad de Alcalá. Alcalá de Henares. Madrid. España Servicio de Enfermedades del Sistema Inmune. Hospital Universitario Príncipe de Asturias. Alcalá de Henares. Madrid. España
Revista:
Medicine: Programa de Formación Médica Continuada Acreditado

ISSN: 0304-5412

Año de publicación: 2021

Título del ejemplar: Enfermedes del sistema inmune (VI)

Serie: 13

Número: 33

Páginas: 1906-1916

Tipo: Artículo

DOI: 10.1016/J.MED.2021.05.004 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Medicine: Programa de Formación Médica Continuada Acreditado

Resumen

La inflamación es una respuesta defensiva que detecta, contiene y erradica amenazas. Defectos en la regulación de su magnitud y duración contribuyen al desarrollo de patologías. Las células centinela y endoteliales vasculares se activan, producen mediadores y promueven la extravasación de leucocitos, moléculas defensivas y fluidos que tras recorrer el tejido inflamado son transportados por la linfa. Los mediadores y antígenos llegan a los ganglios secundarios, donde se generan clones de células que reconocen específicamente al patógeno. Los mediadores, anticuerpos y linfocitos específicos del patógeno retornan a la sangre desde donde localizarán al patógeno en los tejidos inflamados y lo atacarán. Tras la eliminación del patógeno, la inflamación se resuelve y se repara el tejido dañado. El fracaso en su eliminación impide la resolución del proceso, y la inflamación puede propagarse, cronificarse e intensificarse por medio de la formación de estructuras linfoides ectópicas en los tejidos inflamados. La exacerbación de los procesos inflamatorios puede producir daño endotelial y requiere la activación de mecanismos inmunosupresores como las células supresoras mieloides. Finalmente, se discute la participación de los procesos inflamatorios en la formación y resolución del trombo.

Referencias bibliográficas

  • Jin Y, Ji W, Yang H, Chen S, Zhang W, Duan G. Endothelial activation and dysfunction in COVID-19: from basic mechanisms to potential therapeutic approaches. Signal Transduct Target Ther. 2020;5(1):293.
  • Fullerton J, Gilroy D. Resolution of inflammation: a new therapeutic frontier. Nat Rev Drug Discov. 2016;15:551-67.
  • Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest. 2011;121(6):2111-7.
  • Rainard P, Cunha P, Bougarn S, Fromageau A, Rossignol C, Gilbert FB. T helper 17 associated cytokines are produced during antigen specific inflammation in the mammary gland. PLoS One. 2013;8(5):e63471.
  • Kenneth M, Casey W. Janeway ́s Immunobiology, 9th ed. 2016. New York: Garland Science.
  • Yu L, Wang L, Chen S. Endogenous toll-like receptor ligands and their biological significance J Cell Mol Med. 2010;14(11):2592-603.
  • Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1-5.
  • Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol. 2014;5:461.
  • Brubaker SW, Bonham KS, Zanoni I, Kagan JC. Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol. 2015;33: 257-90.
  • Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immunity. 2015;21(8):827-46.
  • Zheng D, Liwinski T, Elinav E. Inflammasome activation and regulation: toward a better understanding of complex mechanisms. Cell Discov. 2020;6:36.
  • Reis ES, Mastellos DC, Hajishengallis G, Lambris JD. New insights into the immune functions of complement. Nat Rev Immunol. 2019;19(8):503-16.
  • Soler R. Tratamiento de las varices en miembros inferiores mediante termoablación endovascular. Tesis doctoral. Universidad de Málaga; 2017.
  • Gimeno MJ, Pascual G, García Honduvilla N, Prieto A, Álvarez de Mon M, Bellón JM. Modulatory role of IL10 in endothelial cell damage and platelet adhesion. Histol Histopathol. 2003;18:695-702.
  • Schött U, Solomon C, Fries D, Bentzer P. The endothelial glycocalyx and its disruption, protection and regeneration: a narrative review. Scand J Trauma Resusc Emerg Med. 2016;24:48.
  • Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532-35.
  • Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176(2): 231-41.
  • Middleton J, Patterson AM, Gardner L, Schmutz C, Ashton BA. Leukocyte extravasation: chemokine transport and presentation by the endothelium. Blood. 2002;100(12):3853-60.
  • Palframan RT, Jung S, Cheng G, Weninger W, Luo Y, Dorf M. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J Exp Med. 2001;194(9):1361-73.
  • Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6(10):a016295.
  • Kourtzelis I, Li X, Mitroulis I, Grosser D, Kajikawa T, Wang B. DEL-1 promotes macrophage efferocytosis and clearance of inflammation. Nat Immunol. 2019; 20(1):40-9.
  • Barnig C, Cernadas M, Dutile S, Liu X, Perrella MA, Kazani S. Lipoxin A4 regulates natural killer cell and type 2 innate lymphoid cell activation in asthma. Sci Transl Med. 2013;5:174ra26.
  • Robertson AL, Holmes GR, Bojarczuk AN, Burgon J, Loynes CA, Chimen M. A zebrafish compound screen reveals modulation of neutrophil reverse migration as an anti-inflammatory mechanism. Sci Transl Med. 2014 6:225ra29.
  • Loynes CA, Lee JA, Robertson AL, Steel MJG, Ellett F, Feng Y. PGE2 production at sites of tissue injury promotes an anti-inflammatory neutrophil phenotype and determines the outcome of inflammation resolution in vivo. Sci Adv. 2018;4(9):eaar8320.
  • de Jong EC, Smits HH, Kapsenberg ML. Dendritic cell-mediated T cell polarization. Springer Semin Immun. 2005;26:289-307.
  • Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy Cancer Sci. 2008;99(8):1501-6.
  • Humby FC, Al Balushi F, Lliso G, Cauli A, Pitzalis C. Can synovial pathobiology integrate with current clinical and imaging prediction models to achieve personalized health care in rheumatoid arthritis? Front Med (Lausanne). 2017;4:41.
  • Armengol MP, Cardoso Schmidt CB, Fernández M, Ferrer X, Pujol Borrell R, Juan M. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J Immunol. 2003; 170(12):6320-8.
  • Kranich J, Krautler NJ. How follicular dendritic cells shape the b-cell antigenome. Front Immunol. 2016;7:225.
  • Moschovakis GL, Bubke A, Friedrichsen M, Falk CS, Feederle R, Förster R. T cell specific Cxcr5 deficiency prevents rheumatoid arthritis. Sci Rep. 2017;7(1):8933.
  • Gregg RW, Maiello P, Borish HJ, Coleman MT, Reed DS, White AG. Spatial and temporal evolution of lung granulomas in a cynomolgus macaque model of Mycobacterium tuberculosis infection, Radiol Infect Dis. 2018;5(3):110-7.
  • Xing K, Murthy S, Liles WC, Singh JM. Clinical utility of biomarkers of endothelial activation in sepsis a systematic review. Critical Care. 2012; 16:R7.
  • Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145-7.
  • de Pablo R, Monserrat J, Prieto A, Álvarez Mon M. Role of circulating soluble chemokines in septic shock. Med Intensiva. 2013;37(8):510-8.
  • Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF. Recommendations for myeloid derived suppressor cell nomenclature and characterization standards. Nat Commun. 2016; 7:12150.
  • Bruger AM, Dorhoi A, Esendagli G, Barczyk Kahlert K, van der Bruggen P, Lipoldova M. How to measure the immunosuppressive activity of MDSC: assays, problems and potential solutions. Cancer Immunol Immunother. 2019;68(4):631-44.
  • Bian Z, Shi L, Venkataramani M, Abdelaal AM, Culpepper C, Kidder K. Tumor conditions induce bone marrow expansion of granulocytic, but not monocytic, immunosuppressive leukocytes with increased CXCR2 expression in mice. Eur J. Immunol. 2018;48:532-42.
  • Feng S, Cheng X, Zhang L, Lu X, Chaudhary S, Teng R. Myeloid derived suppressor cells inhibit T cell activation through nitrating LCK in mouse cancers. PNAS. 2018;115(40):10094-9.
  • Jitschin R, Braun M, Buttner M, Dettmer Wilde K, 3 Bricks J, Berger J. CLL-cells induce IDOhi CD141HLA-DRlo myeloid derived suppressor cells that inhibit T-cell responses and promote Tregs. BLOOD. 2014;124:750-60.
  • Henke PK, Wakefield T. Thrombus resolution and vein wall injury: dependence on chemokines and leukocytes. Thrombosis Research. 2009; 123Suppl4:S72–S78.