Aplicación de los clorofluorocarbonos y el hexafluoruro de azufre como trazadores hidrogeológicos en los acuíferos carbonatados del Parque Natural del Barranco del Río Dulce (Guadalajara)

  1. Martín-Loeches Garrido, M. 1
  2. Fisher, R. 2
  3. Díaz Alcaide, S. 3
  4. Martínez Santos, P. 3
  1. 1 Departamento de Geografía y Geología de la Universidad de Alcalá
  2. 2 NΒΊ 402
  3. 3 Departamento de Geodinámica, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid
Estudios geológicos

ISSN: 0367-0449

Year of publication: 2015

Volume: 71

Issue: 1

Type: Article

DOI: 10.3989/EGEOL.41787.332 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Estudios geológicos

Sustainable development goals


Based on information from boreholes and springs of the aquifers associated with the Jurassic and Cretaceous carbonate materials near the Natural Park of the Barranco del Río Dulce (PNBRD) a conceptual groundwater flow model has been established whose dynamics was validated with the interpretation of the contents of CFC and SF6, never before used in Spain for these purposes. At all points there is a fraction of pre-1950 water that is greater in the recharge areas of the Jurassic units, where the interpretation of the data via the exponential model reflects ages up to 100 years. The interpretation of the contents of CFCs from binary mixture model reflects ages greater than 17 years for the young fraction that may correspond with water that flow through the spaces of intermediate size between the rock matrix and karst conduits. Although not belonging to the same aquifer unit, the points with the highest proportion of water “post-1950” are located in the river valleys of the Cretaceous units. The results are consistent with the existence of generally poor hydraulic gradients, because of the high apparent ages obtained, the existence of multiple inlets and at least a double porosity. In the Cretaceous aquifers there are karst conduits that raise the flow of springs quickly after rainfall and whose influence is not reflected in the samples. CFCs can be useful to indicate the existence of phenomena of current urban pollution. Age values derived from SF6 concentrations are lower than those derived from CFCs, probable due to contribution of this gas from the rock invalidating its use as tracer. The future use of CFCs is compromised by the decreasing tendency of its concentration in the atmosphere, although the comparison of CFC-113 with SF6 of no geological origin, will maintain its utility.

Bibliographic References

  • Adell, F.; Tena-Dávila, M. & Gonzalez, F. (1981a). Mapa Geológico de España. Hoja n° 461 "Siguenza". IGME, Madrid. PMid:6809663
  • Adell, F.; Bascones, L.; Martín, D. & Martínez-Álvarez, F. (1981b). Mapa Geológico de España. Hoja n° 488 "Ablanque". IGME, Madrid. PMid:6809663
  • Ministerio de Industria, Turismo y Comercio de España (2014). Archivo Técnico de Hidrocarburos. https://geoportal.minetur.gob.es/ATHv2/welcome.do.
  • Atkinson, T.C. & Smart, P.L. (1981). Artificial tracers in hydrogeology. In: A survey of British hydrogeology, London, Royal Society, 173–190.
  • Bascones, L. & Martínez, F. (1981). Mapa Geológico de España. Hoja n° 462 "Maranchón". IGME, Madrid. PMid:7294525
  • Busenberg, E. & Plummer, L.N. (1992). The use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age-dating tools: the alluvium and terrace system of Central Oklahoma. Water Resources Research, 28: 2257–2283. http://dx.doi.org/10.1029/92WR01263
  • Busenberg, E. & Plummer, L.N. (2000). Dating young groundwater with sulfur hexafluoride: natural and anthropogenic sources of sulfur hexafluoride. Water Resources Research, 36: 3011–3030. http://dx.doi.org/10.1029/2000WR900151
  • Busenberg, E. & Plummer, L.N. (2006). Potential use of other atmospheric gases. In: Use of Chlorofluorocarbons in Hydrology: A Guidebook. IAEA, Viena, 183–189.
  • Busenberg, E. & Plummer, L.N. (2008). Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfur hexafluoride (SF6), CF3Cl (CFC-13), and CF2Cl2 (CFC-12). Water Resources Research, 44: W02431. http://dx.doi.org/10.1029/2007WR006150
  • Busenberg, E.; Plummer, L.N.; Cook, P.G.; Solomon, D.K.; Han, L.F.; Gröning, H. & Oster, H. (2006). Sampling and analytical methods. In: Use of Chlorofluorocarbons in Hydrology: A Guidebook. IAEA, Viena, 199–217.
  • CHT (2013). Página web de la Confederación Hidrográfica del Tajo. http://www.chtajo.es/Paginas/default.aspx.
  • Cook, P.G.; Plummer, L.N.; Solomon, D.K.; Busenberg, E. & Han, L.F. (2006). Effects and processes that can modify apparent CFC age. In: Use of Chlorofluorocarbons in Hydrology: A Guidebook. IAEA, Viena, 31–56.
  • Cook, D.K. & Solomon, D.K. (1995). Transport of trace gases to the water table: Implications for groundwater dating with chlorofluorocarbons and krypton-85. Water Resources Research, 31: 263–270. http://dx.doi.org/10.1029/94WR02232
  • Cook, P.G. & Solomon, D.K. (1997). Recent advances in dating young groundwater: Chlorofluorocarbons, 3H/3He and 85Kr. Journal of Hydrology, 191: 245–265. http://dx.doi.org/10.1016/S0022-1694(96)03051-X
  • Darling, W.G.; Gooddy, D.C.; MacDonald, A.M. & Morris, B.L. (2012). The practicalities of using CFCs and SF6 for groundwater dating and tracing. Applied Geochemistry, 27 (9): 1688–1697. http://dx.doi.org/10.1016/j.apgeochem.2012.02.005
  • Domenico, P.A. & Schwartz, F.W. (1998). Physical and Chemical Hydrogeology. John Wiley & Sons, New York, 824 pp. PMCid:PMC1170546
  • Fetter, C.W. (2001). Applied Hydrogeology (4th ed.), Prentice-Hall, Upper Saddle River, New Jersey, 598 pp. PMCid:PMC2278817
  • Ford, D. & Williams, P. (2007). Karst Hydrogeology and Geomorphology. Wiley, 576 pp. http://dx.doi.org/10.1002/9781118684986
  • García-Hidalgo, J.F.; Martín-Loeches, M.; Gonzalez, J.A.; Aguilar, M. & García-Quintana, A. (2008). Geología, hidrogeología y paisaje en el Parque Natural del Barranco del Río Dulce (Guadalajara, España). In: Geología de Guadalajara (Calonge, A. & Rodriguez, M., Eds.). Obras colectivas, Ciencias 03, Universidad de Alcalá de Henares, 269–290.
  • Goldscheider, N. & Drew, D. (2007). Methods in Karst Hydrogeology. Taylor & Francis, London, 264 pp.
  • Gooddy, D.C.; Darling, W.G.; Abesser, C. & Lapworth, D.J. (2006). Using chlorofluorocarbons (CFCs) and sulphur hexafluoride (SF6) to characterise groundwater movement and residence time in a lowland Chalk catchment. Journal of Hydrology, 330 (1–2): 44–52. http://dx.doi.org/10.1016/j.jhydrol.2006.04.011
  • Goy, A.; Gómez, J. & Yébenes, A. (1976). El Jurásico de la Rama Castellana de la Cordillera Ibérica (Mitad Norte). Unidades Litoestratigráficas. Estudios Geológicos, 32: 261–283.
  • Han, L.F.; Gröning, M.; Plummer, L.N. & Solomon, D.K. (2006). Comparison of the CFC technique with other techniques (3H, 3H/3He, 85Kr). In: Use of Chlorofluorocarbons in Hydrology: A Guidebook. IAEA, Viena, 191–197.
  • IAEA (2006). Use of Chlorofluorocarbons in Hydrology: A Guidebook. IAEA, STI/PUB/1238. 277 pp.
  • IGME (2013). Unidades hidrogeológicas de España. http://www.igme.es/.
  • Lindsey, B.D.; Phillips, S.W.; Donnelly, C.A.; Speiran, G.K.; Plummer, L.N.; Bohlke, J.K.; Focazio, M.J.; Burton, W.C. & Busenberg, E. (2003). Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed. U.S. Geological Survey Water-Resources Investigations Report 03–4035, 201 pp.
  • Martín-Loeches, M. (2008a). Hidrogeología de los acuíferos carbonatados con influencia en el parque natural del Barranco del río Dulce, Guadalajara. Actas del IX Simposio De Hidrogeología. Asociación Española De Hidrogeólogos. Elche. PMCid:PMC4088836
  • Martín-Loeches, M. (2008b). Hidrogeoquímica y contenido en isótopos ambientales de las aguas subterráneas de los acuíferos carbonatados con influencia en el parque natural del Barranco del río Dulce, Guadalajara. Actas del IX Simposio De Hidrogeología. Asociación Española De Hidrogeólogos. Elche. PMCid:PMC4088836
  • Martín-Loeches, M.; Díaz Alcaide, S. & Martinez, P. (2011). Las aguas subterráneas en el entorno del Parque Natural del Barranco del Río Dulce. Características generales, modelo de flujo conceptual y elaboración de un modelo numérico como herramienta de gestión. JCCM, Informe interno proyecto GUGE002609. xx pp.
  • Plummer, L.N.; Michel, R.L.; Thurman, E.M. & Glynn, P.D. (1993). Environmental tracers for age-dating young ground water. In: Regional Ground-water Quality (Alley, W.M., Ed.), Van Nostrand Reinhold, 255–294.
  • Plummer, L.N. & Busenberg, E. (1999). Chlorofluorocarbons. In: Environmental Tracers in Subsurface Hydrology, Kluwer, Dordrecht, 441–478.
  • Plummer, L.N.; Böhkle, J.K. & Busenberg, E. (2003). Approaches for ground-water dating. In: Residence times and nitrate transport in groundwater discharging to streams in the Chesapeake Bay Watershed. U.S. Geological Survey Water-Resources Investigations Report 03–4035, 12–24.
  • Pulido, A. (1998). Principales rasgos hidrogeológicos de los macizos kársticos andaluces. In: Karst en Andalucía (Durán, J.J. & López Martinez, J., Eds.), 49–53.
  • Pulido, A. (2001). Investigación y exploración de acuíferos kársticos. Boletín Geológico y Minero, 112: 65–76.
  • Quinlan, J.F.; Smart, P.L.; Schindel, G.M.; Alexander, E.C. Jr.; Edwards, A.J. & Smith, A.R. (1992). Recommended administrative/regulatory definition of carbonate aquifers, principles for classification of carbonate aquifers, practical evaluation of vulnerability of karst aquifers, and determination of optimum sampling frequency at springs. In: Proceedings of the third conference on hydrogeology, ecology, monitoring, and management of groundwater in karst terrains, Dublin, Ohio, Water Well Journal Publishing Company, 573–635.
  • Ríos, L.M.; Barettino, D.; Racero, A. & Galera, J.M. (2002). Mapa Geológico de España. Hoja n° 487 "Ledanca". IGME, Madrid.
  • Smart, P.L. & Hobbs, S.L. (1986). Characterisation of carbonate aquifers: a conceptual base. In: 1st Environmental Problems in Karst Terranes and their Solutions Conference (Bowling Green, Kentucky), National Water Well Association, Dublin, Ohio, 1–14. PMCid:PMC1166458
  • USGS (2013). USGS spreadsheet program for preliminary evaluation of CFC data. http://water.usgs.gov/. White, W.B. (1969). Conceptual models for carbonate aquifers. Ground Water, 7: 15–21.
  • Worthington, S.R.H.; Davies, G.J. & Ford, D.C. (2000). Matrix, fracture and channel components of storage and flow in a Paleozoic limestone aquifer. In: Groundwater flow and contaminant transport in carbonate aquifers (Wicks, C.M. & Sasowsky, I.D., Eds.), Rotterdam, Balkema, 113–128.
  • Yager, R.M.; Plummer, N.; Kauffman, L.J.; Doctor, D.H.; Nelms, D.K. & Schlosser, P. (2013). Comparison of age distributions estimated from environmental tracers by using binary-dilution and numerical models of fractured and folded karst: Shenandoah Valley of Virginia and West Virginia, USA. Hydrogeology Journal, 21: 1193–1217. http://dx.doi.org/10.1007/s10040-013-0997-9