Modelos no paramétricos en problemas de clasificación financiera
- PUERTAS MEDINA, ROSA M.
- María Bonilla Musoles Zuzendaria
- José Ignacio Olmeda Martos Zuzendarikidea
Defentsa unibertsitatea: Universitat de València
Fecha de defensa: 2000(e)ko maiatza-(a)k 26
- Matilde Fernandez Blanco Presidentea
- Javier Quesada Ibáñez Idazkaria
- Salvador Cruz Rambaud Kidea
- Eliseo Navarro Arribas Kidea
- Miguel Ángel Tapia Torres Kidea
Mota: Tesia
Laburpena
El credit scoring consiste en la asignación automática de una puntación a una determinada operación de crédito basándose en las característica de la misma así como en el resultado de otras operaciones similares realizadas en el pasado. La presente Tesis analiza la capacidad predictiva de diversos modelos de clasificación en problemas de credit scoring, en concreto, nuestro objetivo consiste en determinar si existe algún modelo que domine a otros, de manera que resulte más atractivo en el proceso de toma de decisiones. Para conseguir este objetivo, analizamos una extensa variedad de modelos no empleados con anterioridad en la literatura. Los modelos empleados son de tipo paramétrico, que suponen una determinada estructura funcional, y no paramétrico, basados en la aproximación a dicha estructura mediante el empleo de formas funcionales flexibles. Tras verificar que, en general, no existen diferencias significativas entre ambos enfoques, se proponen un algoritmo de hibridación que permita aprovechar las ventajas de los modelos individuales y conseguir, de este modo, una mayor eficiencia predictiva. Finalmente, aportamos resultados que demuestran la importancia del procedimiento de estimación, comprobando que los métodos tradicionales resultan ser computacionalmente inferiores a procedimientos heurísticos basados en los principios de evolución natural.