Aplicaciones de la interpolación polinómica clásica en álgebra computacional

  1. MARCO GARCÍA, ANA
Dirigida per:
  1. José Javier Martínez Fernández de las Heras Director

Universitat de defensa: Universidad de Alcalá

Fecha de defensa: 14 de de maig de 2003

Tribunal:
  1. Juan Llovet Verdugo President/a
  2. Juan Rafael Sendra Pons Secretari
  3. María Cruz López de Silanes Busto Vocal
  4. Laureano González Vega Vocal
  5. José María Franco García Vocal
Departament:
  1. Física y Matemáticas

Tipus: Tesi

Teseo: 98776 DIALNET

Resum

Muchos problemas de álgebra computacional resultan intratables debido a que requieren demasiado tiempo y espacio para su resolución. Este es el motivo por el cual la elaboración de algoritmos que disminuyan estos requerimientos es un elemento esencial del álgebra computacional. En eta memoria presentamos un nuevo enfoque basado en el uso de la interpolación clásica que nos permite desarrollar algoritmos eficientes para resolver algunos problemas habituales en álgebra computacional. Nuestro método hará uso de la interpolación de Lagrange y aprovechará la estructura del sistema lineal asociado al problema de interpolación para obtener algoritmos con un alto grado de paralelismo intrínseco, los cuales reducen en gran medida el coste de espacio y tiempo necesario para resolver un problema dado. Nuestros algoritmos tienen carácter determinístico, es decir no poseen etapas probabilísticas, y son adecuados para el caso denso y para problemas que involucran coeficientes reales no racionales. El uso de la interpolación nos permite reducir aquellos cálculos en los que intervienen símbolos a cálculos que únicamente involucran números. En el Capítulo 1 se presentan las herramientas básicas que se usarán en el resto de los capítulos: la interpolación, las resultantes y la descomposición en valores singulares (SVD). En el segundo capítulo se aborda el problema de la implicitación de curvas mediante el cálculo eficiente de la resultante de Sylvester o de Bézout, dejando para el tercero la implicitación de superficies haciendo uso de la resultante de Macaulay. Estos resultados se extienden en el Capítulo 4 al cálculo de determinantes de matrices con elementos polinómicos, problema que surge, además de en la implicitación, en otras áreas del álgebra computacional . El Capítulo 5 se dedica al estudio de la intersección de curvas algebraicas planas.