Depositional architecture and peculiar sedimentary features of Late Cretaceous Utrillas Formation at Tamajón (Guadalajara, Spain)

  1. J. F. García-Hidalgo
  2. J. Gil-Gil
  3. M. Segura
  4. B. Carenas
Revista:
Journal of iberian geology: an international publication of earth sciences

ISSN: 1886-7995 1698-6180

Año de publicación: 2016

Volumen: 42

Número: 3

Páginas: 291-310

Tipo: Artículo

DOI: 10.5209/JIGE.53120 DIALNET GOOGLE SCHOLAR lock_openAcceso abierto editor

Otras publicaciones en: Journal of iberian geology: an international publication of earth sciences

Resumen

La Formación Utrillas está compuesta por una serie de cuñas clásticas que se depositaron en las áreas continentales y costeras de la Cuenca Ibérica durante el ascenso eustático global del Cretácico Superior. En el afloramiento de Tamajón las cuñas del Cenomaniense Su-perior de la Formación Utrillas están compuestas por 4 asociaciones de facies (FA1 a FA4), que se disponen discordantes sobre materiales triásicos. Los sedimentos basales (FA1) se interpretan como depósitos de sistemas fluviales de tipo braided, de alta energía, caracterizados por facies de grano grueso (conglomerados y areniscas); que pasan hacia techo a facies estuarinas con influencia mareal (areniscas y lutitas con estratificación heterolítica inclinada, FA2), y estas a areniscas tabulares y canalizadas costeras de alta energía que presentan diferentes características mareales (FA3); y, finalmente la sucesión da paso a una asociación marina somera (FA4), de grano fino y baja energía (lutitas con areniscas bioturbadas subordinadas). La arquitectura deposicional se basa en la presencia y jerarquía de varios rangos de superficies erosivas y la tendencia granodecreciente general de la sucesión, que caracteriza la tendencia retrogradacional general de esas asociaciones de facies. Los materiales estudiados presentan una serie de características sedimentarias peculiares tales como: 1) la presencia de grandes canales fuertemente erosivos rellenos con un único set de estratificación cruzada de gran escala, de origen mareal. 2) El tamaño y longitud de las propias estratificaciones cruzadas, definidas por parejas de láminas de diferente tamaño de grano, interpretadas como originadas por variaciones en el flujo de la corriente en relación con el sistema mareal. Y 3) una asociación poco frecuente de costras ferruginosas, estructuras de tipo wrinkle y huellas de vertebrados, que suponen el desarrollo de láminas microbianas y encostramientos ferruginosos penecontemporaneos los cuales permitieron a su vez la preservación de las huellas en el registro sedimentario.

Referencias bibliográficas

  • Ahlbrandt, T.S., Fryberger, S.G. (1982): Introduction to eolian deposits. In: P.A. Scholle and D. Spearing (eds.), Sandstone Depositional Environments. American Association of Petroleum Geologists Memoir 31, 11–47.
  • Arnaud, E. (2004): Giant cross-beds in the Neoproterozoic Port Askaig Formation, Scotland: implications for snowball Earth. Sedimentary Geology 165, 155–174. doi:10.1016/j.sedgeo.2003.11.015.
  • Ashley, G.M. (1990): Classification of large-scale subaqueous bedforms: a new look at an old problem. Journal of Sedimentary Petrology 60, 160–172. doi: 10.1306/212F9138-2B24-11D7-8648000102C1865D.
  • Ashworth, P.J., Best, J.L., Jones, M.A. (2007): The relationship between channel avulsion, flow occupancy and aggradation in braided rivers: insights from an experimental model. Sedimentology 54, 497–513. doi: 10.1111/j.1365-3091.2006.00845.x.
  • Avanzini, M. (1998): Anatomy of a footprint: Bioturbation as a key to understanding dinosaur walk dynamics. Ichnos 6, 129-139. doi:10.1080/10420949809386444.
  • Banerjee S., Jeevankumar T.S. (2005): Microbially originated wrinkle structures on sandstone and their stratigraphic context: Palaeoproterozoic Koldaha Shale, central India. Sedimentary Geology 176, 211–224. doi:10.1016/j.sedgeo.2004.12.013.
  • Benvenuti, M., del Conte, S. (2013): Facies and sequence stratigraphic modeling of a Upper Pliocene–Lower Pleistocene fluvial succession (Valdelsa Basin, central Italy). Sedimentary Geology 294, 303–314. doi:10.1016/j.sedgeo.2013.06.006.
  • Bottjer, D., Hagadorn, J.W. (2007): Mat growth features. In: J. Schieber, P.K. Bose, P.G. Eriksson, S. Banerjee, S. Sarkar, W. Altermann, O.
  • Catuneau, (eds.), Atlas of Microbial Mat Features Preserved Within the Siliciclastic Rock Record, Atlas in Geosciences. Elsevier, Amsterdam, pp. 53–71.
  • Breda, A., Mellere, D., Massari, F., Asioli, A. (2009): Vertically stacked Gilbert-type deltas of Ventimiglia (NW Italy): The Pliocene record of an overfilled Messinian incised valley. Sedimentary Geology 219, 58–76. doi:10.1016/j.sedgeo.2009.04.010.
  • Bridge, J.S. (2003): Rivers and Floodplains: Forms, Processes and Sedimentary Record. Blackwell Publishing, Oxford, 504 p.
  • Bridge, J. (2006): Fluvial facies models: recent developments. In: H.W. Posamentier, R.G. Walker (eds.), Facies Models Revisited. SEPM, Special Publication 84, 85–117.
  • Cant, D.J., Walker, R.G. (1978): Fluvial processes and facies sequences in the sandy braided South Saskatchewan River, Canada. Sedimentology 25, 625-648. doi: 10.1111/j.1365-3091.1978.tb00323.x.
  • Carvalho, I.S., Borghi, L., Leonardi, G. (2013): Preservation of dinosaur tracks induced by microbial mats in the Sousa Basin (Lower Cretaceous), Brazil. Cretaceous Research 44, 112-121. doi:10.1016/j.cretres.2013.04.004.
  • Choi, K.S. (2010): Rhythmic climbing-ripple cross-lamination in inclined heterolithic stratification (IHS) of a macrotidal estuarine channel, Gosmo Bay, west coast of Korea. Journal of Sedimentary Research 80, 550–561. doi: 10.2110/jsr.2010.054.
  • Collinson, J.D., Thompson, D.B. (1982): Sedimentary Structures. London: George Allen & Unwin, 194 p. Dai, H., Xing, L., Marty, D., Zhang, J., Scott Persons IV, W., Hu, H., Wang, F. (2015): Microbially-induced sedimentary wrinkle structures and possible impact of microbial mats for the enhanced preservation of dinosaur tracks from the Lower Cretaceous Jiaguan Formation near Qijiang (Chongqing, China). Cretaceous Research 53, 98-109. doi:10.1016/j.cretres.2014.10.012.
  • Dalrymple, R.W. (1992): Tidal depositional systems. In: R.G. Walker, N.P. James (eds.), Facies Models, Response to Sea-level Changes. Geological Association of Canada, St John’s, Newfoundland, pp. 195-218.
  • Dalrymple, R.W., Knight, R.J., Zaitlin, B.A., Middelton, G.V. (1990): Dynamics and facies model of a macrotidal sand-bar complex, Cobequid Bay-Salmon River Estuary (Bay of Fundy). Sedimentology 37, 577–612. doi: 10.1111/j.1365-3091.1990.tb00624.x.
  • Dalrymple, R.W., Baker, E.K., Harris, P.T., Hughes, M. (2003): Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea). In: F.H. Sidi, D. Nummedal, P. Imbert, H. Darman, H.W. Posamentier (eds.), Tropical Deltas of Southeast Asia – Sedimentology, Stratigraphy, and Petroleum Geology. SEPM Special Publication 76, 147–173.
  • Dalrymple, R.W., Choi, K.S. (2007): Morphologic and facies trends through the fluvial marine transition in tide-dominated depositional systems: a schematic framework for environmental and sequencestratigraphic interpretation. Earth-Science Reviews 81, 135–174. doi:10.1016/j.earscirev.2006.10.002.
  • Dasgupta, P., Manna, P. (2011): Geometrical mechanism of inverse grading in grain-flow deposits: An experimental revelation. Earth-Science Reviews 104, 186–198. doi:10.1016/j.earscirev.2010.10.002.
  • Dieguez, C., Peyrot, D., Barrón, E. (2010): Floristic and vegetational changes in the Iberian Peninsula during Jurassic and Cretaceous. Review of palaeobotany and Palynology 162, 325-340. doi:10.1016/j.revpalbo.2010.06.004.
  • Fedo, C.M., Cooper, J.D. (1990): Braided fluvial to marine transition: the basal Lower Cambrian Wood Canyon Formation, southern Marble Mountains, Mojave Desert, California. Journal of Sedimentary Petrology 60, 220–234.
  • Fenies, H., Tastet, J. (1998): Facies and architecture of an estuarine tidal bar (the Trompeloup bar, Gironde Estuary, SW France). Marine Geology 150, 149–169. doi:10.1016/S0025-3227(98)00059-0.
  • Fluteau, F., Ramstein, G., Besse, J., Guiraud, R., Masse, J.P. (2007): Impacts of palaeogeography and sea level changes on Mid-Cretaceous climate. Palaeogeography Palaeoclimatology Palaeoecology 247, 357–381. doi:10.1016/j.palaeo.2006.11.016.
  • García-Hidalgo, J.F., Temiño, J., Segura, M. (2002): Holocene eolian sediments on the southern border of the Duero basin (Spain): origin and development of an eolian system in a temperate zone. Journal of Sedimentary Research 72, 30–39.
  • García-Hidalgo, J.F., Gil, J., Segura, M., Domínguez, C. (2007): Internal anatomy of a mixed siliciclastic-carbonate platform: The Late Cenomanian-Mid Turonian at the southern margin of the Spanish Central System. Sedimentology 54, 1245-1271. doi: 10.1111/j.1365-3091.2007.00880.x
  • Gil, J., Carenas, B., Segura, M., García-Hidalgo, J.F., García, A., (2004): Revisión y correlación de las unidades litoestratigráficas del Cretácico Superior en la región central y oriental de España. Revista de la Sociedad Geológica de España 17, 249–266.
  • Gil-Gil, J., Fernández-Marrón, M.T., García-Hidalgo, J.F., Segura, M., Fonollá-Ocete, J.F. (2013): Palinología del Turoniense en el sinclinorio de Campisábalos: aportaciones al análisis estratigráfico secuencial (Sistema Central-Cordillera Ibérica; Guadalajara-Segovia, España). Revista de la Sociedad Geológica de España 26, 23-36.
  • González-Casado, J.M., Caballero, J.M., Casquet, C., Galindo, C., Tornos, F. (1996): Paleostress and geotectonic interpretation of the Alpine Cycle onset in the Sierra del Guadarrama (eastern Iberian Central System), based on evidence from episyenites. Tectonophysics 262, 213-229. doi:10.1016/0040-1951(96)00004-2.
  • Hagadorn, J.W., Bottjer, D.J. (1997): Wrinkle structures: microbially mediated sedimentary structures in siliciclastic settings at the Proterozoic–Phanerozoic transition. Geology 25, 1047–1050. doi: 10.1130/0091-7613(1997) 025<1047:WSMMSS> 2.3.CO;2.
  • Hagadorn J.W., Bottjer, D.J. (1999): Restriction of a Late Neoproterozoic biotope: suspect-microbial structures and trace fossils at the Vendian-Cambrian transition. Palaios 14, 73–85. doi: 10.2307/3515362.
  • Harris, P.T. (1988): Large scale bedforms as indicators of mutually evasive sand transport and the sequential infilling of wide-mouthed estuaries. Sedimentary Geology 57, 273–298. doi:10.1016/0037-0738(88)90034-6.
  • Heinberg, C., Birkelund, T. (1984): Trace-fossil assemblages and basin evolution of the Vardekløft Formation (Middle Jurassic, Central East Greenland). Journal of Paleontology 58, 362–397.
  • Hernáiz, P.P., López Olmedo, F., Cabra, P., Solé, J., Escuder, J., Valverde, P., Dunning, G., Bea, F., Gálvez García, C. (2005): Hoja geológica num. 459 (Tamajón). Mapa Geológico de España E. 1:50.000. Segunda serie, I.G.M.E., Madrid.
  • Hori, K., Saito, Y., Zhang, Q., Wang, P. (2002): Architecture and evolution of the tide-dominated Changjiang (Yangtze) River delta, China. Sedimentary Geology 146, 249–264. doi:10.1016/S0037-0738(01)00122-1.
  • Johnson, S.M., Dashtgard, S.E. (2014): Inclined heterolithic stratification in a mixed tidal–fluvial channel: Differentiating tidal versus fluvial controls on sedimentation. Sedimentary Geology 301, 41–53. doi:10.1016/j.sedgeo.2013.12.004.
  • Kleinhans, M.G. (2001): The key role of fluvial dunes in transport and deposition of sand–gravel mixtures, a preliminary note. Sedimentary Geology 143, 7–13. doi:10.1016/S0037-0738(01)00109-9.
  • Kleinhans M.G. (2004): Sorting in grain flows at the lee side of dunes. Earth-Science Reviews 65, 75–102. doi:10.1016/S0012-8252(03)00081-3.
  • Lan, Z.W., Chen, Z.Q. (2013): Proliferation of MISS-forming microbial mats after the late Neoproterozoic glaciations: Evidence from the Kimberley region, NW Australia. Precambrian Research 224, 529–550. doi:10.1016/j.precamres.2012.11.008.
  • Leren, B.L.S., Howell, J., Enge, H., Martinius, A.W. (2010): Controls on stratigraphic architecture in contemporaneous delta systems from the Eocene Roda Sandstone, Tremp-Graus Basin, northern Spain. Sedimentary Geology 229, 9–40. doi:10.1016/j.sedgeo.2010.03.013.
  • Limarino, C.O., Spalletti, L.A. (1986): Eolian permian deposits in west and northwest Argentina Sedimentary Geology 49, 109-127. doi:10.1016/0037-0738(86)90017-5.
  • Limarino, C.O., Césaria, S.N., Net, L.I., Marenssi, S.A., Gutierrez, R.P., Tripaldi, A. (2002): The Upper Carboniferous postglacial trangresion in the Paganzo and Río Blanco basins (northwestern Argentina): facies and stratigraphic significance. Journal of South American Earth Sciences 15, 445–460. doi:10.1016/S0895-9811(02)00048-2.
  • Longhitano, S. (2008): Sedimentary facies and sequence stratigraphy of coarse-grained Gilbert-type deltas within the Pliocene thrust-top Potenza Basin (Southern Apennines, Italy). Sedimentary Geology 210, 87–110. doi:10.1016/j.sedgeo.2008.07.004.
  • Makse, H.A., Ball, R.C., Stanley, H.E., Warr, S. (1998): Dynamics of granular stratification. Physical Review E 58, 3357–3367. doi: 10.1103/PhysRevE.58.3357.
  • Martín, J.M., Braga, J.C., Aguirre, J., Puga-Bernabéu, Á. (2009): History and evolution of the North-Betic Strait (Prebetic Zone, Betic Cordillera): A narrow, early Tortonian, tidal-dominated, Atlantic–Mediterranean marine passage. Sedimentary Geology 216, 80–90. doi:10.1016/j.sedgeo.2009.01.005.
  • Marty, D., Strasser, A., Meyer, C.A. (2009): Formation and taphonomy of human footprints in microbial mats of present-day tidal-flat environments: Implication for the study of fossil footprints. Ichnos 16, 127-142. doi:10.1080/10420940802471027
  • Mellere, D. (1994): Sequential development of an estuarine valley fill: the Twowells Tongue of the Dakota Sandstone, Acoma Basin, New Mexico. Journal of Sedimentary Research 64, 500–515.
  • Miall, A.D. (1985): Architecture-element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews 22, 261–308.
  • Miall, A.D. (1996): The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology. Springer-Verlag Inc., Heidelberg, 582 p.
  • Mojica, J., Wiedmann, J. (1977): Kreide-Entwicklung und Cénomanien/Turonien-Grenze der mittleren Keltiberischen Ketten bei Nuévalos (prov. Zaragoza-Spanien): Eclogae Geologicae Helvetiae 70, 739-759. http://dx.doi.org/10.5169/seals-164639.
  • Noffke, N. (2009): The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, Sandy deposits. Earth-Science Reviews 96, 173–180. doi:10.1016/j.earscirev.2008.08.002.
  • Noffke, N., Knoll, A.H., Grotzinger, J. (2002): Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the upper Neoproterozoic Nama Group, Namibia. Palaios 17, 1–14. doi: 10.1669/0883-1351.
  • Olariu, C., Steel, R.J., Dalrymple, R.W., Gingras, M.K. (2012): Tidal dunes versus tidal bars: The sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sedimentary Geology 279, 134–155. doi:10.1016/j.sedgeo.2012.07.018.
  • Passalia, M.G., Llorens, M., Césari, S.N., Limarino, C.O., Perez Loinaze, V.S., Vera, E.I. (2016): Revised stratigraphic framework of the Cretaceous in the Bajo Grande area (Argentinean Patagonia) inferred from new U–Pb ages and palynology. Cretaceous Research 60, 152–166. doi:10.1016/j.cretres.2015.11.004.
  • Peyrot, D., Barrón, E., Comas-Rengifo, M.J., Barroso-Barcenilla, F., Feist-Burkhardt, S. (2008): Palinología del tránsito Cenomaniense/Turoniense en la sección de Puentedey (Burgos, España). Coloquios de Paleontología 58, 101-161.
  • Porada, H., Bouougri E.H. (2007): Wrinkle structures—a critical review. Earth-Science Reviews 81, 199–215. doi:10.1016/j.earscirev.2006.12.001.
  • Portero García, J.M., Díaz Molina, M., González Lodeiro, F., Pérez González, A., Gallardo, J., Aguilar, M. J., Leal, M.C. (1990): Hoja geológica num. 485 (Valdepeñas de la Sierra). Mapa Geológico de España E. 1:50.000. Segunda serie, I.G.M.E., Madrid.
  • Pruss, S., Frasier, M., Bottjer, D.J. (2004): Proliferation of Early Triassic wrinkle structures: implications for environmental stress following the end-Permian extinction. Geology 32, 461– 464. doi: 10.1130/ G20354.1
  • Reesink, A.J.H., Bridge, J.S. (2007): Influence of superimposed bedforms and flow unsteadiness on formation of cross strata in dunes and unit bars. Sedimentary Geology 202, 281–296. doi:10.1016/j.sedgeo.2007.02.005.
  • Reesink, A.J.H., Bridge J.S. (2009): Influence of bedform superimposition and flow unsteadiness on the formation of cross strata in dunes and unit bars — Part 2, further experiments. Sedimentary Geology 222, 274–300. doi:10.1016/j.sedgeo.2009.09.014.
  • Salas, R., Casas, A. (1993): Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin, Tectonophysics 228, 33–55. doi:10.1016/0040-1951(93)90213-4.
  • Schwartz, T.M., Graham, S.A. (2015): Stratigraphic architecture of a tide-influenced shelf-edge delta, Upper Cretaceous Dorotea Formation, Magallanes-Austral Basin, Patagonia. Sedimentology 62, 1039–1077. doi: 10.1111/sed.12176.
  • Segura, M., Wiedmann, J. (1982): La transgresión del Cretácico Superior en el sector de Atienza Sigüenza (Guadalajara, Cordillera Ibérica) y el significado de la fauna Ammonitífera. Cuadernos de Geología Ibérica 8, 293-307.
  • Segura, M., García-Hidalgo, J.F., Carenas, B., Gil, J., García, A. (2004): Evolución paleogeográfica de la Cuenca Ibérica en el Cretácico Superior. Geogaceta 36,103-106.
  • Segura, M., Barroso-Barcenilla, F., Berrocal-Casero, M., Castanera, D., García-Hidalgo, J.F., Santos, V.F. (2016): A new Cenomanian vertebrate tracksite at Tamajón (Guadalajara, Spain): Palaeoichnology and palaeoenvironmental implications. Cretaceous Research 57, 508-518. doi:10.1016/j.cretres.2015.04.011.
  • Segura, M., Elorza, J. (2013): Presencia de ventifactos en las facies Utrillas (Tamajón-Sacedoncillo, borde Suroriental del Sistema Central, Guadalajara): aspectos morfológicos y procedencia. Revista de la Sociedad Geológica de España 26, 47-63.
  • Shiers, M.N., Mountney, N.P., Hodgson, D.M., Cobain, S.L. (2014): Depositional controls on tidally influenced fluvial successions, Neslen Formation, Utah, USA. Sedimentary Geology 311, 1–16. doi:10.1016/j.sedgeo.2014.06.005.
  • Sisulak, C.F., Dashtgard, S.E. (2012): Seasonal controls on the development and character of inclined heterolithic stratification in a tide-influenced, fluvially dominated channel: Fraser River, Canada. Journal of Sedimentary Research 82, 244–257. doi: 10.2110/jsr.2012.21.
  • Smith, A.M. (1992): Subaqueous giant (15 m) and supergiant (40 m) dunes from the Lower Permian Vryheid Formation of the Karoo Supergroup, northern Natal, South Africa. Sedimentary Geology 77, 215–224. doi:10.1016/0037-0738(92)90127-D.
  • Smith, D.G., Hubbard, S.M., Leckie, D.A., Fustic, M. (2009): Counter point bar deposits: lithofacies and reservoir significance in the meandering modern Peace River and ancient McMurray Formation, Alberta, Canada. Sedimentology 56, 1655–1669. doi: 10.1111/j.1365-3091.2009.01050.x.
  • Tanner, L.H., Khalifa, M.A. (2010): Origin of ferricretes in fluvial-marine deposits of the Lower Cenomanian Bahariya Formation, Bahariya Oasis, Western Desert, Egypt. Journal of African Earth Sciences 56, 179–189. doi:10.1016/j.jafrearsci.2009.07.004.
  • Thomas, R.G., Smith, D.G., Wood, J.M., Visser, J., Calverley-Range, E.A., Koster, E.H. (1987): Inclined heterolithic stratification-terminology, description, interpretation and significance. Sedimentary Geology 53, 123-179. doi:10.1016/S0037-0738(87)80006-4.
  • Wiedmann, J. (1975): Subdivisiones y precisiones bioestratigráficas en el Cretácico superior de las Cadenas Celtibéricas. Actas 1º Simposium Cretácico Cordillera Ibérica, 135-154.
  • Willis, B.J. (2005): Deposits of tide-influenced river deltas. In: L. Giosian, J.P. Bhattacharya (eds.), River deltas: Concepts, Models and Examples. SEPM, Special Publication 83, Tulsa, pp. 87-129.