Perimetría de duplicación de frecuencias en lesiones retroquiasmáticas

  1. CD Cerio Ramsden
  2. FJ Muñoz Negrete
  3. JGM Moro
  4. G Rebolleda
Revue:
Archivos de la Sociedad Española de Oftalmologia

ISSN: 0365-6691

Année de publication: 2003

Volumen: 78

Número: 3

Pages: 143-150

Type: Article

DOI: 10.4321/S0365-66912003000300005 DIALNET GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Archivos de la Sociedad Española de Oftalmologia

Résumé

Objective: To determine the ability of frequency doubling technology (FDT) to evaluate retrochiasmatic lesions. Methods: 21 patients with characteristic retrochiasmatic visual field defects in automated perimetry (Humphrey field analyzer, 24-2 SITA) underwent FDT using C-20 screening and threshold tests. Two independent observers described the visual field defects, the degree of congruence and macular sparing of the three explorations. Results: The visual field defect found in the 24-2 test was inferred in 63.2% and 70% of the eyes from the C-20 screening and C-20 threshold test respectively. The retrochiasmatic lesions were congruent in 45% of the cases in automated perimetry, 5.6% in C-20 screening and 15% in C-20 threshold test. Macular sparing was present in 45% of cases with automated perimetry, 89% with C-20 screening and 82% with C-20 threshold test. Conclusions: The FDT allows us to suspect retrochiasmatic lesions in more than one-half of patients, but it tends to underestimate the defects. It is not useful for detecting macular sparing or the evaluation of visual field congruence. Both FDT strategies offer similar results, so the C-20 screening test could be more advisable because of its speed (mean: 70 seconds). However, in retrochiasmatic lesions the FDT accuracy is considerably lower than the 24-2 SITA strategy.

Références bibliographiques

  • Johnson, CA, Samuels, SJ. (1997). Screening for glaucomatous visual field loss with frequency-doubling perimetry. Invest Ophthalmol Vis Sci. 38. 413-425
  • Brusini, P, Busatto, P. (1998). Frequency doubling perimetry in glaucoma early diagnosis. Acta Ophthalmol Scand suppl. 227. 23-24
  • Trible, JR, Schultz, RO, Robinson, JC, Rothe, TL. (2000). Accuracy of glaucoma detection with frequency-doubling perimetry. Am J Ophthalmol. 129. 740-745
  • Johnson, CA, Cioffi, GA, Van Buskirk, EM. (1999). Frequency doubling technology perimetry using a 24- -2 stimulus presentation pattern. Optom Vis Sci. 76. 571-581
  • Cello, KE, Nelson-Quigg, JM, Johnson, CA. (2000). Frequency doubling technology perimetry for detection of glaucomatous visual field loss. Am J Ophthalmol. 129. 314-322
  • Maddes, T, Henry, GH. (1992). Performance of nonlinear visual units in ocular hypertension and glaucoma. Clin Vis Sci. 7. 371-383
  • Kogure, S, Membrey, WL, Fitzke, FW, Tsukahara, S. (2000). Effect of decreased retinal illumination on frequency doubling technology. Jpn J Ophthalmol. 44. 489-493
  • Quigley, HA, Dunkelberger, GR, Green, WR. (1988). Chronic human glaucoma causing selectively greater loss of large optic nerve fibers. Ophthalmology. 95. 357-363
  • Iester, M, Mermoud, A, Schnyder, C. (2000). Frequency doubling technique in patients with ocular hypertension and glaucoma: correlation with octopus perimeter indices. Ophthalmology. 107. 288-294
  • Fujimoto, N, Adachi-Usami, E. (2000). Frequency doubling perimetry in resolved optic neuritis. Invest Ophthalmol Vis Sci. 41. 2558-2560
  • Thomams, D, Thomas, R, Muliyil, JP, George, R. (2001). Role of frequency doubling perimetry in detecting neuro-ophthalmic visual field defects. Am J Ophthalmol. 131. 734-741
  • Neahring, RK, Wall, M, Withrow, K. (1997). Sensitivity and specificity of frequency doubling perimetry in neuro-ophthalmologic disorders. Invest Ophthalmol Vis Sci suppl. 38. 390
  • Hollander, DA, Volpe, NJ, Moster, ML, Liu, GT, Balcer, LJ, Judy, KD. (2000). Use of a portable head mounted perimetry system to assess bedside visual fields. Br J Ophthalmol. 84. 1185-1190
  • Muñoz Negrete, FJ, Rebolleda, G. (2002). Perimetría automática y neuro-oftalmología: Correlación topográfica. Arch Soc Esp Oftalmol. 77. 413-428
  • Bengtsson, B, Olsson, J, Heijl, A, Rootzen, H. (1997). A new generation of algorithms for computerized threshold perimetry, SITA. Acta Ophthalmol Scan. 75. 368-375
  • Alward, WL. (2000). Frequency doubling technology perimetry for the detection of glaucomatous visual field loss. Am J Ophthalmol. 129. 376-378
  • Sponsel, WE, Arango, S, Trigo, Y, Mensah, J. (1998). Clinical classification of glaucomatous visual field loss by frequency doubling perimetry. Am J Ophthalmol. 125. 830-836
  • Quigley, HA. (1998). Identification of glaucoma-related visual field abnormality with the screening protocol of frequency doubling technology. Am J Ophthalmol. 125. 819-829
  • Chauhan, BC, Johnson, CA. (1999). Test-restest variability of frequency-doubling perimetry and conventional perimetry in glaucoma patients and normal subjects. Invest Ophthalmol Vis Sci. 40. 648-656
  • Burnstein, Y, Ellish, NJ, Magbalon, M, Higginbotham, EJ. (2000). Comparison of frequency doubling perimetry with humphrey visual field analysis in a glaucoma practice. Am J Ophthalmol. 129. 328-333
  • Patel, SC, Friedman, DS, Varadkar, P, Robin, AL. (2000). Algorithm for interpreting the results of frequency doubling perimetry. Am J Ophthalmol. 129. 323-327
  • Casson, R, James, B, Rubinstein, A, Ali, H. (2001). Clinical comparison of frequency doubling tecnology perimetry and Humphrey perimetry. Br J Ophthalmol. 85. 360-362
  • Miller, NR, Newman, NJ. (1998). Walsh & Hoyt’s Clinical Neuro-ophthalmology. 5. Williams & Wilkins. Baltimore.
  • Iester, M, Capris, P, Pandolfo, A, Zingrian, M, Traverso, CE. (2000). Learning effect, short-term fluctuation, and long-term fluctuation in frequency doubling technique. Am J Ophthalmol. 130. 160-164
  • Adams, CW, Bullimore, MA, Wall, M, Fingeret, M, Johnson, CA. (1999). Normal aging effects for frequency doubling technology perimetry. Optom Vis Sci. 76. 582-587