¿pueden las interfaces de usos del suelo explicar la ocurrencia de incendios forestales a escala provincial?

  1. Garrido Redondo, Jesús 1
  2. Vilar, Lara
  3. Echevarría, Pilar
  4. Martínez-Vega, Javier
  5. Martín, M. Pilar
  1. 1 Centro de Ciencias Humanas y Sociales (CCHS, CSIC)
Journal:
Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

ISSN: 1578-5157

Year of publication: 2018

Issue: 22

Type: Article

DOI: 10.21138/GF.611 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

More publications in: Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

Abstract

Land uses and their relationship with socio-economic factors are a key aspect in the management of wildfires. This study analyzes the forest fires occurrence in the period 2005- 2010 using as explanatory variables the contact zones between land uses (interfaces: agricultural-forest (AFI), urban-forest (WUI) and grassland-forest (GFI)) due to its relationship with the wildfire occurrence in Spain, calculated from Climate Change Initiative-Land Cover maps, and using MaxEnt to generate two predictive models (general and specific) in Zamora and Madrid. In the general model, the AFI contributed the more in Zamora, and the WUI in Madrid. The vegetation formations models generally improved the accuracy values in both provinces and the percentage of agreement in Zamora and the spatial risk discrimination, optimizing potential actions aimed at prevention.

Bibliographic References

  • Agencia Estatal de Meteorología, A.E.M.E.T. (2011): Atlas Climático Ibérico. Elaborado por el Departamento de Producción de AEMET y por el Departamento de Meteorología y Clima del Instituto de Meteorología de Portugal. Ministerio de Agricultura, Alimentación y Medio Ambiente. pp. 1-80.
  • Baldwin, R.B. (2009): Use of Maximum Entropy Modelling in Wildlife Research. Entropy, 11, pp. 854-866.
  • Bar Massada, A., Radeloff, V.C., Stewart, S.I.,Hawbaker, T.J. (2009): Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin. Forest Ecology and Management, 258, pp. 1990-1999.
  • Bar Massada, A., Syphard, A.D., Stewart, S.I.,Radeloff, V.C. (2012): Wildfire ignition-distribution modelling: a comparative study in the Huron—Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 22, pp. 174-183.
  • Bond, W.J.,van Wilgen, B.W. (1996): Fire and Plants. Population and community biology series, 14, pp. 1-227.
  • Bowman, D.M., Balch, J., Artaxo, P., Bond, W.J., Cochrane, M.A., D'Antonio, C.M., Defries, R., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Mack, M., Moritz, M.A., Pyne, S., Roos, C.I., Scott, A.C., Sodhi, N.S., Swetnam, T.W.,Whittaker, R. (2011): The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), pp. 2223-2236.
  • Camarero, L. (1993): Del éxodo rural y del éxodo urbano. Ocaso y Renacimiento de los asentamientos rurales en España. Madrid: Ministerio de Agricultura, Pesca y Alimentación, pp. 1-524.
  • Cohen, J.D. (2000): Preventing disaster: home ignitability in the wildland-urban interface. Journal of Forestry, 98, pp. 15-21.
  • Comunidad de Madrid (2007): Atlas. El Medio Ambiente de la Comunidad de Madrid. http://www.madrid.org/bvirtual/BVCM003345.pdf (consultado 25-04-2018).
  • Castilla y León (2018). Consejería de Fomento y Medio Ambiente de Castilla y León. http://www.medioambiente.jcyl.es/ (consultado 25-04-2018).
  • Couturier, T., Besnard, A., Bertolero, A., Bosc, V., Astruc, G.,Cheylan, M. (2014): Factors determining the abundance and occurrence of Hermann’s tortoise Testudo hermanni in France and Spain: fire regime and landscape changes as the main drivers. Biological Conservation, 170, pp. 177-187.
  • Cubo, J.E., Enríquez, E., Gallar, J.J., López. M., Mateo, M.L., Muñoz, A.,Parra, P.J. (2012): Los Incendios Forestales en España. Decenio 2001-2010. Ministerio de Agricultura, Alimentación y Medio Ambiente, M.A.P.A.M.A., pp. 1-138.
  • Chou, Y.H., Minnich, R.A., Chase, R.A. (1993): Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environmental Management, 17, pp. 129–140.
  • Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M.P., Vilar, L., Martínez, J., Martín, S., Ibarra, I., De La Riva, J., Baeza, J., Rodríguez, F., Molina, J.R., Herrera, M.A.,Zamora, R. (2010): Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221, pp. 46-58.
  • Deblauwe, V., Barbier, N., Couteron, P., Lejeune, O.,Bogaert, J. (2008): The global biogeography of semi-arid periodic vegetation patterns. Global Ecology and Biogeography, 17(6), pp. 715-723.
  • Defourny, P., Santoro, M., Kirches, G., Wevers, J., Boettcher, M., Brockmann, C., Lamarche, C.,Bontemps, S. (2017): Land Cover CCI Product User Guide Version 2.0. UCL-Geomatics, Louvain-la-Neuve, Belgium, pp. 1-105.
  • Diputación de Zamora (2018). http://www.diputaciondezamora.es (consultado 25-04-2018).
  • Egan, J.P. (1975): Signal detection theory and ROC analysis. Series in Cognition and Perception. Academic Press, New York., pp. 1-277.
  • Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K.S., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S.,Zimmermann, N.E. (2006): Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), pp. 129-151.
  • Elith, J., Kearney, M.,Phillips, S. (2010): The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, pp. 330-342.
  • ESRI. (2014): Environmental System Research Institute (ESRI). ArcGIS Desktop Help 10.2. Geostatistical Analyst, Standfor, CA, USA.
  • Feng, C., Yongsheng, D., Shukui, N.,Jinlong, Z. (2015): Modeling Forest Lightning Fire Occurrence in the Daxinganling Mountains of Northeastern China with MAXENT. Forests, 6, pp. 1422-1438.
  • Gallardo, M., Gómez, I., Vilar, L., Martínez-Vega, J.,Martín, M.P. (2015): Impacts of future land use/land cover on wildfire occurrence in the Madrid region (Spain). Regional Environmental Change, 16(4), pp. 1047-1061.
  • Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M.,Lampin, C. (2013): A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environmental Management, 51, pp. 651-662.
  • Giovannini, A., Seglie, D.,Giacoma, C. (2014): Identifying priority areas for conservation of spadefoot toad, Pelobates fuscus insubricus using a maximum entropy approach. Biodiversity and Conservation, 23, pp. 1427-1439.
  • Guisan, A., Graham, C.H., Elith, J.,Huettmann, F. (2007): Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), pp. 332-340.
  • Gutiérrez, J.M., Bedia, J., Cofiño, A.S., Fernández, J.,San-Martín, D. (2013): Forest fires under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world. European Project http://fumeproject.uclm.es/, pp. 1-32.
  • Hanley, J.,McNeil, B. (1982): The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, pp. 29-36.
  • Hastie, T.J., Tibshirani, R.J.,Friedman, J. (2009): The elements of statistical learning. Dordrecht, editor: Springer, pp. 1-763.
  • INE (2018): INEbase. Estadísticas territoriales. http://www.ine.es/FichasWeb/RegProvincias.do (consultado 25-04-2018).
  • Lampin-Maillet, C., Long-Fournel, M., Ganteaume, A., Jappiot, M.,Ferrier, J.P. (2011): Land cover analysis in wildland—urban interfaces according to wildfire risk: A case study in the South of France. Forest Ecology and Management, 261(12), pp. 2200-2213.
  • Leone, V., Koutsias, N., Martínez, J., Vega-García, C., Allgöwer, B.,Lovreglio, R. (2003): The Human Factor in Fire Danger Assessment. In: Chuvieco, E., editor. Wildland Fire Danger Estimation and Mapping The Role of Remote Sensing Data. Singapore: World Scientific Publishing., 4, pp. 143-194.
  • Martínez, J., Vega-García, C.,Chuvieco, E. (2009): Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90(2), pp. 1241-1252.
  • Maxent. Biodiversity Informatics. American Museum of Natural History. https://biodiversityinformatics.amnh.org/open_source/maxent/ (consultado 25-04-2018)
  • Millington, J.D.A., Wainwright, J., Perry, G.L.W., Romero-Calcerrada, R.,Malamud, B.D. (2009): Modelling Mediterranean landscape succession-disturbance dynamics: A landscape fire-succession model. Environmental Modelling & Software, 24(10), pp. 1196-1208.
  • Nafría, D.A., Garrido, N., Álvarez, M.V., Cubero, D., Fernández, M., Villarino, I., Gutiérrez, A.,Abia, I. (2013): Atlas Agroclimático de Castilla y León. Junta de Castilla y León. Instituto Tecnológico Agrario de Castilla y León. Ministerio de Agricultura, Alimentación y Medio Ambiente., pp. 1-137.
  • National Interagency Fire Center, N.I.F.C. (2004): Wildland fire statistics.
  • Nelder, J.A.,Wedderburn, R.W.M. (1972): Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General), 135(3), pp. 370-384.
  • Nicolás, J.M.,Caballero, D. (2001): Demanda territorial de defensa contra incendios forestales. Un caso de estudio: Comunidad de Madrid. Proceedings of Spanish National Forest Congress. Granada 2001, pp. 1-16.
  • Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A.,Pereira, J.M.C. (2012): Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, 275(0), pp. 117-129.
  • Padilla, M.,Vega-García, C. (2011): On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. International Journal of Wildland Fire, 20, pp. 46-58.
  • Parisien, M.A.,Moritz, M.A. (2009): Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79, pp. 127-154.
  • Parisien, M.A., Snetsinger, S., Greenberg, J.A., Nelson, C.R., Schoennagel, T., Dobrowski, S.Z.,Moritz, M.A. (2012): Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 21, pp. 313-327.
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M.,Peterson, A.T. (2007): Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), pp. 102-117.
  • Pena, J.C.C., Kamino, L.H.Y., Rodrigues, M., Mariano-Neto, E.,Siqueira, M.F. (2014): Assessing the conservation status of species with limited available data and disjunct distribution. Biological Conservation, 170, pp. 130-136.
  • Pérez-Cabello, F., Echevarría, M.T., Ibarra, P.,de la Riva, J. (2009): Effects of Fire on Vegetation, Soil and Hydrogeomorphological Behaviour in Mediterranean Ecosystems. In: Chuvieco E, editor. Earth Observation of Wildland Fires in Mediterranean Ecosystems., pp. 111-128.
  • Phillips, S.J., Anderson, R.P.,Schapire, R.E. (2006): Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, pp. 231-259.
  • Phillips, S.J., Dudik, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J.,Ferrier, S. (2009): Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19(1), pp. 187-197.
  • Phillips, S.J., Dudik, M.,Schapire, R.E. (2004): A Maximum Entropy Approach to Species Distribution Modeling. Proceedings of the Twenty-First International Conference on Machine Learning, pp. 655-662.
  • Radeloff, V.C., Hammer, R.B., Stewart, S.I., Fried, J.S., Holcomb, S.S.,McKeefry, J.F. (2005): The Wildland-Urban Interface in the United States. Ecological Applications, 15(3), pp. 799-805.
  • Renard, Q., Pélissier, R., Ramesh, B.R.,Kodandapani, N. (2012): Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21, pp. 368-379.
  • Rodrigues, M., de la Riva, J.,Fotheringham, S. (2014): Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Applied Geography, 48, pp. 52-63.
  • Rodríguez-Rodríguez, D., Martínez-Vega, J. (2017). Assessing recent environmental sustainability in the Spanish network of National Parks and their statutory peripheral areas. Applied Geography, 89, pp. 22-31.
  • Romero-Calcerrada, R., Novillo, C.J., Millington, J.D.A.,Gómez-Jiménez, I. (2008): GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecology, 23, pp. 341-354.
  • Romero-Calcerrada, R.,Perry, G.L.W. (2004): The role of land abandonment in landscape dynamics in the SPA 'Encinares del río Alberche y Cofio, Central Spain, 1984-1999. Landscape and Urban Planning, 66, pp. 217-232.
  • Spessa, A., McBeth, B.,Prentice, C. (2005): Relationships among fire frequency, rainfall and vegetation patterns in the wet-dry tropics of northern Australia: an analysis based on NOAA-AVHRR data. Global Ecology and Biogeography, 14, pp. 439-454.
  • Sturtevant, B.R.,Cleland, D.T. (2007): Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. International Journal of Wildland Fire, 16, pp. 398-413.
  • Syphard, A.D., Radeloff, V.C., Keeley, J.E., Hawbaker, T.J., Clayton, M.K., Stewart, S.I.,Hammer, R.B. (2007): Human influence in California Fire regimes. Ecological Applications, 17(5), pp. 1388-1402.
  • Syphard, A.D., Radeloff, V.C., Keuler, N.S., Taylor, R.S., Hawbaker, T.J., Stewart, S.I.,Clayton, M.K. (2008): Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17, pp. 602-613.
  • van der Werf, G.R., Randerson, J.T., Collatz, G.J.,Giglio, L. (2003): Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology, 9, pp. 547-562.
  • Vilar, L., Gómez, I., Martínez-Vega, J., Echavarría, P., Riaño, D.,Martín, M.P. (2016): Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms. PLoS ONE, 11(8), pp. 1-17.
  • Vilar, L., Martín, M.P.,Martínez, F.J. (2008): Empleo de técnicas de regresión logística para la obtención de modelos de riesgo humano de incendio forestal a escala regional. Boletín de la AGE, 47, pp. 5-29.
  • Vilar, L., Martín, M.P.,Martínez, F.J. (2011): Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. European Journal of Forest Research, 130, pp. 983-996.
  • Vilar, L., Woolford, D.G., Martell, D.L.,Martín, M.P. (2010): A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain. International Journal of Wildland Fire, 19, pp. 325-337.
  • Winter, G.J.,Fried, S.J. (2001): Estimating contingent values for protection from wildland fire using a two-stage decision framework. Forest Science, 47(3), pp. 349-360.
  • Zadrozny, B. (2004): Learning and evaluating classifiers under sample selection bias. Proceedings of the twenty-first international conference on Machine learning. Banff, Alberta, Canada. 1015425: ACM., pp. 114.