Flexión compuesta esviada en secciones de hormigón armado. Aproximación numérica

  1. Lanti, R. 1
  2. Martínez, M. 2
  1. 1 Doctor Arquitecto. Universidad de Alcalá, Alcalá de Henares
  2. 2 Doctora Arquitecta. Universidad de Alcalá
Journal:
Informes de la construcción

ISSN: 0020-0883

Year of publication: 2020

Volume: 72

Issue: 558

Type: Article

DOI: 10.3989/IC.69148 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: Informes de la construcción

Abstract

Perform serviceability requirements in reinforced concrete sections according to codes and standards need the knowledge of strain and stress in steel bars within the section. For general axial and biaxial bending, obtaining the response equilibrium plane of the transversal section is a problem that has to be solved by means of a numerical method. This paper exposes a general approach for this purpose, based on moment curvature families of diagrams for the external axial load, and presents an experimental evaluation. The method is universal in terms of to external loads, shape of the transversal sections, and also constitutive models of materials involved.

Bibliographic References

  • (1) Pannell, F.N. (1959). Biaxially Loaded Reinforced Concrete Columns. ACI Journal, Proceedings, ASCE V.85, ST6: 47-54.
  • (2) Bresler, B. (1960). Design Criteria for Reinforced Columns Under Axial Load and Biaxial Bending. ACI Journal, Proceedings, 57: 481-490.
  • (3) Rüsch, H., Grasser, E., Rao, P. (1962). Principes de calcul du béton armé sous des états de contraintes monoaxiaux. Bulletin nº 36 of CEB.
  • (4) Weber, D.C. (1966). Ultimate Strength Design Charts for Columns with Biaxial Bending. ACI Journal, Proceedings, 63: -1320, Disc., 1538-1586.
  • (5) Parme, A., Nieves, J., Gouwens, A. (1966). Capacity of Reinforced Rectangular Columns Subjected to Biaxial Bending.
  • ACI Journal, Proceedings, 63: 911-923.
  • (6) Morán, F. (1972). Design of Reinforced Concrete Sections Under Normal Loads and Stresses in the Ultimate State. CEB Bulletin d’Information Nº83.
  • (7) ACI Committee 318, American Concrete Institute. (2014). Building Code Requirements for Structural Concrete ACI-318-14.
  • (8) Comité Europeo de Normalización (1992). Eurocódigo 2, Proyecto de Estructuras de Hormigón. AENOR.
  • (9) Ministerio de Fomento, Comisión Permanente del Hormigón (2008). Instrucción de Hormigón Estructural EHE-08.
  • (10) CEB-FIP Model Code (1990). Comité Euro-International du Beton.
  • (11) Corres, H., Pérez, A., Martínez, J.L., López, J.C. (2008). Prontuario Informático del Hormigón Estructural EHE-08.
  • Madrid: Instituto Español del Cemento y sus Aplicaciones.
  • (12) Fernández, M.A., Bonet, J.L., Miguel Sosa, P.F. (2000). Integración de tensiones en secciones de hormigón sometidas a flexo compresión esviada. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 16(2): 209-225.
  • (13) Barros, M., Barros, A. and Ferreira, C. (2004). Closed form solution of optimal design of rectangular reinforced concrete sections. Engineering Computations, 21(7): 761-776.
  • (14) Gil-Martín, L.M., Hernández-Montes, E., Aschheim, M. (2010). Optimal reinforcement of RC columns for biaxial bending. Material and Structures, 43(9): 1245-1256.
  • (15) Papanikolaou, V.K. (2012). Analysis of arbitrary composite sections in biaxial bending and axial load. Computers and Structures, 98-99: 33-54.