Autorreactividad, tolerancia y autoinmunidad

  1. Díaz Martín, D. 1
  2. Álvarez-Mon Soto, M. 2
  1. 1 Departamento de Medicina y Especialidades Médicas. Universidad de Alcalá. Alcalá de Henares. Madrid. España
  2. 2 Departamento de Medicina y Especialidades Médicas. Universidad de Alcalá. Alcalá de Henares. Madrid. España Servicio de Medicina Interna, Reumatología y Autoinmunidad. Hospital Universitario Príncipe de Asturias. Alcalá de Henares. Madrid. España
Revista:
Medicine: Programa de Formación Médica Continuada Acreditado

ISSN: 0304-5412

Año de publicación: 2021

Título del ejemplar: Enfermedes del sistema inmune (VI)

Serie: 13

Número: 33

Páginas: 1893-1905

Tipo: Artículo

DOI: 10.1016/J.MED.2021.05.003 DIALNET GOOGLE SCHOLAR

Otras publicaciones en: Medicine: Programa de Formación Médica Continuada Acreditado

Objetivos de desarrollo sostenible

Resumen

La autoinmunidad es una respuesta inmune contra uno o varios antígenos propios. Las enfermedades autoinmunes son el resultado del daño o la pérdida de función fisiológica en órganos y tejidos, debido a una respuesta autoinmune. Este reconocimiento específico está mediado por las células del sistema inmune adaptativo, es decir, linfocitos T y B, si bien en los mecanismos de daño participan también células y moléculas del sistema inmune innato. Las enfermedades autoinmunes son crónicas y suelen ser progresivas. La persistencia del antígeno, de las células T y B memoria específicas de los mismos y los poderosos mecanismos de amplificación inflamatorios son los mecanismos patogénicos que perpetúan la enfermedad. Los mecanismos de tolerancia son esenciales para el control de la autorreactivad, principalmente los mediados en periferia por los linfocitos T. La etiología de las enfermedades autoinmunes no está esclarecida, aunque parece claro que es multifactorial. La propensión genética es un factor importante, y determinados conjuntos de alelos de genes pueden predisponer a la enfermedad. Además, los factores ambientales como la infección y la lesión tisular parecen fundamentales en su desarrollo.

Referencias bibliográficas

  • Collins T, Cotran RS, Kumar V. Robbins, patología estructural y funcional. 6ª ed. Madrid: McGraw-Hill. Interamericana. p. 226-231; 247-264; 267-271.
  • Pollard KM, Hultman P, Kono DH. Immunology and genetics of induced systemic autoimmunity. Autoimmun Rev. 2005;4(5):282-8.
  • Matzinger P. Tolerance, damage, and the extenden familiy. Annu Rev Immunol. 1994;12:991-1045.
  • Root Bernstein R, Fairweather D. Complexities in the relationship between infection and autoimmunity. Curr Allergy Asthma Rep. 2014;14(1): 407.
  • Rosenblum MD, Remedios KA, Abbas AK. Mechanisms of human autoimmunity. J Clin Invest. 2015;125(6):2228-33.
  • McCombe PA1, Greer JM, Mackay IR. Sexual dimorphism in autoimmune disease. Curr Mol Med. 2009;9(9):1058-79.
  • Bluestone JA, Bour Jordan H, Cheng M, Anderson M. T cells in the control of organ specific autoimmunity. J Clin Invest. 2015;125(6):2250-60.
  • Bluestone JA. Mechanisms of tolerance. Immunol Rev. 2011; 241(1):5-19.
  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298(5597):1395-401.
  • Mills KH1. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol. 2011;11(12):807-22.
  • Strasser A, Bouillet P. The control of apoptosis in lymphocyte selection. Immunol Rev. 2003;193:82-92.
  • Zhang J, Xu X, Liu Y. Activation induced cell death in T cells and autoimmunity. Cell Mol Immunol. 2004;1(3):186-92.
  • Alessandri C, Barbati C, Vacirca D, Piscopo P, Confaloni A, Sanchez M. T lymphocytes from patients with systemic lupus erythematosus are resistant to induction of autophagy. FASEB J. 2012;26(11):4722-32.
  • Xu K, Xu P, Yao JF, Zhang YG, Hou WK, Lu SM. Reduced apoptosis correlates with enhanced autophagy in synovial tissues of rheumatoid arthritis. Inflamm Res. 2013;62(2):229-37.
  • Caspi RR. Immunotherapy of autoimmunity and cancer: the penalty for success. Nat Rev Immunol. 2008;8(12):970-6.
  • Welsh RM, Che JW, Brehm MA, Selin LK. Heterologous immunity between viruses. Immunol Rev. 2010;235(1):244-66.
  • Varani S, Landini MP. Cytomegalovirus induced immunopathology and its clinical consequences. Herpesviridae. 2011;2(1):6.
  • Filippi CM, von Herrath MG. 99th Dahlem conference on infection, inflammation and chronic inflammatory disorders: viruses, autoimmunity and immunoregulation. Clin Exp Immunol. 2010;160(1):113-9.
  • Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev. 2006;19(1):80-94.
  • Álvarez Mon M, Kehrl JH, Fauci AS. A potential role for adrenocortico tropin in regulating human B lymphocyte functions. J Immunol. 1985; 135:3823-6.
  • Álvarez Mon MA, Gómez Lahoz AM, Orozco A, Lahera G, Sosa Reina MD, Diaz D. Blunted expansion of regulatory T lymphocytes is associated with increased bacterial translocation in patients with major depressive disorder. Front Psychiatry. 2021;11:591-962.
  • Francisco LM, Sage PT, Sharpe AH. PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2011;236: 219-42.
  • Singh RP, Waldron RT, Hahn BH. Genes, tolerance and systemic autoimmunity. Autoimmun Rev. 2012;11(9):664-9.
  • Kim JI, Rothstein DM, Markmann JF. Role of B cells in tolerance induction. Curr Opin Organ Transplant. 2015;20(4):369-75.
  • Blair PA, Noreña LY, Flores Borja F, Rawlings DJ, Isenberg DA, Ehrenstein MR. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients. Immunity. 2010;32(1):129-40.
  • Flores Borja F, Bosma A, Ng D, Reddy V, Ehrenstein MR, Isenberg DA. CD19+CD24hiCD38hi B cells maintain regulatory T cells while limiting TH1 and TH17 differentiation. Sci Transl Med. 2013;5(173): 173
  • Gray M, Miles K, Salter D, Gray D, Savill J. Apoptotic cells protect mice from autoimmune inflammation by the induction of regulatory B cells. Proc Natl Acad Sci U S A. 2007 Aug 28;104(35):14080-5.
  • Lee KM, Stott RT, Zhao G, SooHoo J, Xiong W, Lian MM, et al. TGF-beta producing regulatory B cells induce regulatory T cells and promote transplantation tolerance. Eur J Immunol. 2014;44(6):1728-36.
  • Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late phase immunopathogenesis. J Immunol. 2010;185(4):2240-52.
  • Baecher Allan C, Viglietta V, Hafler DA. Human CD4+CD25+ regulatory T cells. Semin Immunol. 2004;16(2):89-98.
  • Long SA, Buckner JH. CD4+FOXP3+ T regulatory cells in human autoimmunity: more than a numbers game. J Immunol. 2011;187(5): 2061-6.
  • Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):315ra189.
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330-6.
  • Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD. TGF-beta induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature. 2008;453(7192):236-40.
  • Wang J, Ioan Facsinay A, van der Voort EI, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur J Immunol. 2007;37(1):129-38.
  • Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523-32.
  • Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X. Regulatory T cell derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546-58.
  • Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ. Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood. 2004;104(9):2840-8.
  • Wing K, Onishi Y, Prieto Martin P, Yamaguchi T, Miyara M, Fehervari Z. CTLA-4 control over Foxp3+ regulatory T cell function. Science. 2008;322(5899):271-5.
  • Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204(6):1257-65.
  • Chinen T, Kannan AK, Levine AG, Fan X, Klein U, Zheng Y. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol. 2016;17(11):1322-33.
  • Rosenzwajg M, Churlaud G, Mallone R, Six A, Dérian N, Chaara W. Low dose interleukin-2 fosters a dose dependent regulatory T cell tuned milieu in T1D patients. J Autoimmun. 2015;58:48-58.
  • von Spee Mayer C, Siegert E, Abdirama D, Rose A, Klaus A, Alexander T. Low dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann Rheum Dis. 2016;75(7):1407-15.
  • Rioux JD, Abbas AK. Paths to understanding the genetic basis of autoimmune disease. Nature. 2005;435(7042):584-9.
  • Abramson J, Husebye ES. Autoimmune regulator and self tolerance molecular and clinical aspects. Immunol Rev. 2016;271(1):127-40.
  • Gregersen PK, Olsson LM. Recent advances in the genetics of autoimmune disease. Annu Rev Immunol. 2009;27:363-91.
  • Lauro ML, Burch JM, Grimes CL. The effect of NOD2 on the microbiota in Crohn’s disease. Curr Opin Biotechnol. 2016;40:97-102.
  • Kivity S, Agmon Levin N, Blank M, Shoenfeld Y. Infections and autoimmunity friends or foes? Trends Immunol. 2009;30(8):409-14.
  • Doria A, Sarzi Puttini P, Shoenfeld Y. Infections, rheumatism and autoimmunity: the conflicting relationship between humans and their environment. Autoimmun Rev. 2008;8(1):1-4.
  • Romani L. Parasites and autoimmunity: the case of fungi. Autoimmun Rev. 2008;8(2):129-33.
  • Honda K, Littman DR. The microbiota in adaptive immune homeostasis and disease. Nature. 2016;535(7610):75-84.
  • Lleo A, Battezzati PM, Selmi C, Gershwin ME, Podda M. Is autoimmunity a matter of sex? Autoimmun Rev. 2008;7(8):626-30.