The number of generalized balanced lines

  1. David Orden 1
  2. Pedro Ramos 1
  3. Gelasio Salazar 2
  1. 1 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

  2. 2 Universidad Autónoma de San Luis Potosí
    info

    Universidad Autónoma de San Luis Potosí

    San Luis Potosí, México

    ROR https://ror.org/000917t60

Buch:
XIII Encuentros de Geometría Computacional: Zaragoza, del 29 de junio al 1 de julio de 2009
  1. García Olaverri, Alfredo (ed. lit.)
  2. Tejel, Javier (ed. lit.)

Verlag: Prensas de la Universidad de Zaragoza ; Universidad de Zaragoza

ISBN: 978-84-92774-11-1

Datum der Publikation: 2009

Seiten: 229-233

Art: Buch-Kapitel

Zusammenfassung

Let S be a set of r red points and b = r+2± blue points in general position in the plane. A line ` determined by them is said to be balanced if in each open half-plane bounded by ` the difference between the number of red points and blue points is ±. We show that every set S as above has at least r balanced lines. The main techniques in the proof are rotations and a generalization, sliding rotations, introduced here.