Coordinación emergente en sistemas multirobots

  1. Gil Perez, Angel Eduardo 1
  2. Aguilar, José 2
  3. Rivas, Rafael 2
  4. Dapena, Eladio 2
  1. 1 Universidad Nacional Experimental del Táchira
    info

    Universidad Nacional Experimental del Táchira

    San Cristobal, Venezuela

    ROR https://ror.org/00fr68j09

  2. 2 Universidad de Los Andes
    info

    Universidad de Los Andes

    Bogotá, Colombia

    ROR https://ror.org/02mhbdp94

Aldizkaria:
Revista UIS Ingenierías

ISSN: 2145-8456 1657-4583

Argitalpen urtea: 2019

Alea: 18

Zenbakia: 3

Orrialdeak: 75-86

Mota: Artikulua

DOI: 10.18273/REVUIN.V18N3-2019008 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Beste argitalpen batzuk: Revista UIS Ingenierías

Laburpena

In nature there are societies of living beings that coordinate their actions in a non-centralized way. For example, emergent processes that combine the actions of individuals in the achievement of a common goal occur in ant colonies. This paper describes a management layer that facilitates emerging coordination processes in multi-robot systems, which together with other two layers (one of individual management and another of knowledge management), manage the processes necessary for the operation of the multi-robot system. In particular, this layer allows the appearance of emergency and self-organization in the system.  

Erreferentzia bibliografikoak

  • Citas [1] S. Zhang, Z. Lin, and G. Yan, “Local multi-robot coordination and experiments,” in 12th International Conference on Control, Automation, Robotics and Vision, ICARCV, 2012, pp. 913–918. doi: 10.1109/ICARCV.2012.6485279
  • [2] W. Ding, G. Yan, and Z. Lin, “Collective motions and formations under pursuit strategies on directed acyclic graphs,” Automatica, vol. 46, no. 1, pp. 174–181, 2010, doi: 10.1016/j.automatica.2009.10.025.
  • [3] M. Colby, J. J. Chung, and K. Tumer, “Implicit adaptive multi-robot coordination in dynamic environments,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 5168–5173. doi: 10.1109/IROS.2015.7354105
  • [4] H. Ahmadzadeh and E. Masehian, “Fuzzy coordination graphs and their application in multi-robot coordination under uncertainty,” in 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), 2014, pp. 345–350. doi: 10.1109/ICRoM.2014.6990925
  • [5] J. Santos, P. Costa, L. F. Rocha, A. P. Moreira, and G. Veiga, “Time enhanced A∗: Towards the development of a new approach for Multi-Robot Coordination,” in 2015 IEEE International Conference on Industrial Technology (ICIT), 2015, pp. 3314–3319. doi: 10.1109/ICIT.2015.7125589
  • [6] M. Lujak and A. Fernández, “Distributed multi-robot coordination combining semantics and real-time scheduling,” in 2015 10th Iberian Conference on Information Systems and Technologies (CISTI), 2015, pp. 1–6. doi: 10.1109/CISTI.2015.7170599
  • [7] O. Cheikhrouhou, A. Koubâa, and H. Bennaceur, “Move and improve: A distributed multi-robot coordination approach for multiple depots multiple travelling salesmen problem,” in 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), 2014, pp. 28–35. doi: 10.1109/ICARSC.2014.6849758
  • [8] F. J. Mendiburu, M. R. A. Morais, and A. M. N. Lima, “Behavior coordination in multi-robot systems,” in 2016 IEEE International Conference on Automatica (ICA-ACCA), 2016, pp. 1–7. doi: 10.1109/ICA-ACCA.2016.7778506
  • [9] M. Cáp, P. Novák, M. Selecký, J. Faigl, and J. Vokffnek, “Asynchronous decentralized prioritized planning for coordination in multi-robot system,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2013, pp. 3822–3829. doi: 10.1109/IROS.2013.6696903
  • [10] Y. Quiñonez, I. Tostado, and O. Sánchez, “Coordination Model for Multi-robot Systems Based on Cooperative Behaviors,” in 2013 12th Mexican International Conference on Artificial Intelligence, 2013, pp. 33–37. doi: 10.1109/MICAI.2013.46
  • [11] A. Gil, J. Aguilar, R. Rivas, E. Dapena, and K. Hernandez, “Architecture for Multi-robot Systems with Emergent Behavior,” in International Conference on Artificial Intelligence (ICAI), 2015.
  • [12] A. Gil, J. Aguilar, R. Rivas, E. Dapena, and K. Hernandez, “Diseño de una plataforma multi-robot de propósito general,” in Congreso Internacional de Métodos Numéricos en Ingeniería y Ciencias Aplicadas. Simulación y aplicaciones recientes para ciencia y tecnología, 2016.
  • [13] J. Aguilar, “Introducción a los Sistemas Emergentes,” Universidad de Los Andes, Mérida, Venezuela, 2014.
  • [14] C. R. Kube and E. Bonabeau, “Cooperative transport by ants and robots,” Rob. Auton. Syst., vol. 30, no. 1, pp. 85–101, 2000, doi: 10.1016/S0921-8890(99)00066-4
  • [15] Á. E. Gil Pérez, J. L. Aguilar Castro, R. D. J. Rivas Estrada, and E. Dapena González, “Módulo Conductual Inmerso En Una Arquitectura De Control Para Sistemas Multi-Robots,” Ing. al Día, vol. 2, no. 1, pp. 40–57, Jan. 2015.
  • [16] Y. Tohyama and H. Igarashi, “Cooperative transportation by multi-robots with selecting leader,” in 35th Annual Conference of IEEE Industrial Electronics, 2009, pp. 4179–4184. doi: 10.1109/IECON.2009.5415079
  • [17] S. Moon, D. Kwak, and H. J. Kim, “Cooperative control of differential wheeled mobile robots for box pushing problem,” in 2012 12th International Conference on Control, Automation and Systems, 2012, pp. 140–144.
  • [18] A. Ghosh, A. Ghosh, A. Konar, and R. Janarthanan, “Multi-robot cooperative box-pushing problem using multi-objective Particle Swarm Optimization technique,” in 2012 World Congress on Information and Communication Technologies, 2012, pp. 272–277. doi: 10.1109/WICT.2012.6409087
  • [19] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of cooperating agents,” IEEE Trans. Syst. Man, Cybern. Part B, vol. 26, no. 1, pp. 29–41, 1996, doi: 10.1109/3477.484436
  • [20] H. Cheng, Q. Zhu, Z. Liu, T. Xu, and L. Lin, “Decentralized navigation of multiple agents based on ORCA and model predictive control,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 3446–3451. doi: 10.1109/IROS.2017.8206184
  • [21] E. Sahin et al., “SWARM-BOT: pattern formation in a swarm of self-assembling mobile robots,” in IEEE International Conference on Systems, Man and Cybernetics, 2002, vol. 4. doi: 10.1109/ICSMC.2002.1173259
  • [22] S. Sang-Wook, Y. Hyun-Chang, and S. Kwee-Bo, “Behavior learning and evolution of swarm robot system for cooperative behavior,” in 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2009, pp. 673–678. doi: 10.1109/AIM.2009.5229933
  • [23] P. Nebot and E. Cervera, “La arquitectura Acromovi: Una arquitectura para tareas cooperativas de robots móviles,” in Una Perspectiva de la Inteligencia Artificial en su 50 Aniversario, Albacete: Gráficas Quintanilla, 2006, pp. 365–376.
  • [24] F. de la Rosa and M. E. Jimenez, “Simulation of Multi-robot Architectures in Mobile Robotics,” in 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), 2009, pp. 199–203. doi: 10.1109/CERMA.2009.57.
  • [25] J. H. Posselius et al., “Control architecture for multi-robot system,” U.S. Patent No. 9,527,211, 27-Dec-2016.
  • [26] J. Stephan, J. Fink, V. Kumar, and A. Ribeiro, “Hybrid architecture for communication-aware multi-robot systems,” in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 5269–5276. doi: 10.1109/ICRA.2016.7487737
  • [27] C. Hu, C. Hu, D. He, and Q. Gu, “A new ROS-based hybrid architecture for heterogeneous multi-robot systems,” in The 27th Chinese Control and Decision Conference (2015 CCDC), 2015, pp. 4721–4726. doi: 10.1109/CCDC.2015.7162759
  • [28] Y. Cai, Z. Tang, Y. Ding, and B. Qian, “Theory and application of multi-robot service-oriented architecture,” IEEE/CAA J. Autom. Sin., vol. 3, no. 1, pp. 15–25, 2016, doi: 10.1109/JAS.2016.7373758.
  • [29] J. Aguilar, M. Cerrada, G. Mousalli, F. Rivas, and F. Hidrobo, “A Multiagent Model for Intelligent Distributed Control Systems BT - Knowledge-Based Intelligent Information and Engineering Systems,” in International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, 2005, pp. 191–197.