Objective diagnosis of fibromyalgia using neuroretinal evaluation and artificial intelligence

  1. Luciano Boquete 1
  2. Maria-José Vicente 2
  3. Juan-Manuel Miguel-Jiménez 1
  4. Eva-María Sánchez-Morla 3
  5. Miguel Ortiz 4
  6. Maria Satue 2
  7. Elena Garcia-Martin 2
  1. 1 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

  2. 2 Universidad de Zaragoza
    info

    Universidad de Zaragoza

    Zaragoza, España

    ROR https://ror.org/012a91z28

  3. 3 Hospital Universitario 12 de Octubre
    info

    Hospital Universitario 12 de Octubre

    Madrid, España

    ROR https://ror.org/00qyh5r35

  4. 4 University of Luxembourg
    info

    University of Luxembourg

    Ciudad de Luxemburgo, Luxemburgo

    ROR https://ror.org/036x5ad56

Journal:
International journal of clinical and health psychology

ISSN: 1697-2600

Year of publication: 2022

Volume: 22

Issue: 2

Pages: 31-40

Type: Article

DOI: 10.1016/J.IJCHP.2022.100294 DIALNET GOOGLE SCHOLAR lock_openOpen access editor

More publications in: International journal of clinical and health psychology

Sustainable development goals

Abstract

Antecedentes/Objetivo Identificar biomarcadores objetivos de fibromialgia (FM) aplicando inteligencia artificial a datos estructurales de retina obtenidos mediante tomografía de coherencia óptica Swept Source (TCO-SS). Método Se evaluó una cohorte de 29 pacientes con FM y otra de 32 sujetos control, registrando los espesores de la retina completa, de varias capas de la retina [capa de células ganglionares (CCG+), CCG ampliada (CCG++, entre la membrana limitante interna y los límites de la capa nuclear interna) y capa de fibras nerviosas (CFNR)] y de la coroides, mediante TCO-SS. La capacidad discriminante se evaluó mediante el área bajo la curva ROC (AROC) y el algoritmo Relief. Se implementó un sistema de ayuda al diagnóstico con clasificador automático. Resultados No se observó diferencia significativa (p ≥ .660) en la coroides, pero sí en el sector inferior del anillo interno de la CFNR (p = .010) y en los cuatro sectores del anillo interno en las capas CCG+, CCG++ y retina completa. Utilizando un árbol de decisión ensemble RUSBoosted como clasificador de las características con mayor capacidad discriminante, se obtuvo una predicción alta (AROC=.820). Conclusiones Se identifica un potencial biomarcador objetivo y no invasivo para el diagnóstico de FM basado en el análisis de la neurorretina mediante TCO-SS.

Bibliographic References

  • Andres-Rodríguez, L., Borr�as, X., Feliu-Soler, A., Perez-Aranda, A., Rozadilla-Sacanell, A., Arranz, B., Montero-Marin, J., García-Campayo, J., Angarita-Osorio, N., Maes, M., & Luciano, J. V. (2019). Machine Learning to Understand the Immune-Inflammatory Pathways in Fibromyalgia. International Journal of Molecular Sciences, 20. https://doi.org/10.3390/ ijms20174231 Article 4231.
  • Andres-Rodríguez, L., Borras, X., Feliu-Soler, A., Perez-Aranda, A., Rozadilla-Sacanell, A., Montero-Marin, J., Maes, M., & Luciano, J. V. (2019). Immune-inflammatory pathways and clinical changes in fibromyalgia patients treated with MindfulnessBased Stress Reduction (MBSR): A randomized, controlled clinical trial. Brain, Behavior, and Immunity, 80, 109–119. https://doi.org/10.1016/j.bbi.2019.02.030.
  • Bambo, M. P., Garcia-Martin, E., Gutierrez-Ruiz, F., Magallon, R., Roca, M., Garcia-Campayo, J., & Pablo, L. E. (2015). Study of perfusion changes in the optic disc of patients with fibromyalgia syndrome using new colorimetric analysis software. Journal Français d’Ophtalmologie, 38, 580–587. https://doi.org/ 10.1016/j.jfo.2015.01.010.
  • Barandela, R., Sanchez, J. S., & Valdovinos, R. M. (2003). New Applications of Ensembles of Classifiers. Pattern Analysis and Applications, 6, 245–256. https://doi.org/10.1007/s10044-003- 0192-z.
  • Ciregia, F., Giacomelli, C., Giusti, L., Boldrini, C., Piga, I., Pepe, P., Consesi, A., Gori, S., Lucacchini, A., Mazzoni, M. R., & Bazzichi, L. (2019). Putative salivary biomarkers useful to differentiate patients with fibromyalgia. Journal of Proteomics, 190, 44–54. https://doi.org/10.1016/j.jprot.2018.04.012.
  • Clauw, D. J. (2014). Fibromyalgia. JAMA, 311. https://doi.org/ 10.1001/jama.2014.3266 Article 1547.
  • Clos-Garcia, M., Andres-Marin, N., Fernandez-Eulate, G., Abecia, L., Lavín, J. L., van Liempd, S., Cabrera, D., Royo, F., Valero, A., Errazquin, N., Gomez Vega, M. C., Govillard, L., Tackett, M. R., Tejada, G., Gonzalez, E., Anguita, J., Bujanda, L., Callejo Orcasitas, A. M., Aransay, A. M., Maíz, O., Lopez de Munain, A., & & Falcon-Perez, J. M. (2019). Gut microbiome and serum metabolome analyses identify molecular biomarkers and altered glutamate metabolism in fibromyalgia. EbioMedicine, 46, 499–511. https://doi.org/10.1016/j.ebiom. 2019.07.031.
  • Czako, C., Kovacs, T., Ungvari, Z., Csiszar, A., Yabluchanskiy, A., Conley, S., Csipo, T., Lipecz, A., Horvath, H., Sandor, G. L., Istvan, L., Logan, T., Nagy, Z. Z., & Kovacs, I. (2020). Retinal biomarkers for Alzheimer’s disease and vascular cognitive impairment and dementia (VCID): Implication for early diagnosis and prognosis. Geroscience, 42, 1499–1525. https://doi.org/ 10.1007/s11357-020-00252-7.
  • Demmin, D. L., Mote, J., Beaudette, D. M., Thompson, J. L., & Silverstein, S. M. (2020). Retinal functioning and reward processing in schizophrenia. Schizophrenia Research, 219, 25–33. https://doi.org/10.1016/j.schres.2019.06.019.
  • Desideri, L. F., Barra, F., & Ferrero, S. (2019). The importance of avoiding confounding factors when measuring choroid by optical coherence tomography in psychotic patients. Psychiatry Research, 279. https://doi.org/10.1016/j.psychres.2018.05.071 Article 366.
  • Dominguez, A., Medina, A., & Navas, N. (2020). Validaci�on del cuestionario fibromyalgia impact questionnaire (FIQ) adaptado al español. Revista Sanitaria de Investigacion. https://www.revistasanitariadeinvestigacion.com/validacion-del-cuestionariofibromyalgia-impact-questionnaire-fiq-adaptado-al-espanol/.
  • Garcia-Martin, E., Ara, J. R., Martin, J., Almarcegui, C., Dolz, I., Vilades, E., Gil-Arribas, L., Fernandez, F. J., Polo, V., Larrosa, J. M., Pablo, L. E., & Satue, M. (2017). Retinal and Optic Nerve Degeneration in Patients with Multiple Sclerosis Followed up for 5 Years. Ophthalmology, 124, 688–696. https://doi.org/10.1016/j.ophtha.2017.01.005.
  • Garcia-Martin, E., Garcia-Campayo, J., Puebla-Guedea, M., Ascaso, F. J., Roca, M., Gutierrez-Ruiz, F., Vilades, E., Polo, V., Larrosa, J. M., Pablo, L. E, & Satue, M. (2016). Fibromyalgia is correlated with retinal nerve fiber layer thinning. PLOS ONE, 11. https://doi.org/10.1371/journal.pone.0161574 Article e0161574.
  • Garcia Martin, E., Gavín, A., Cipres, M., Garcia-Campayo, J., Vilades, E., Orduna, E., Polo, V., Larrosa, J. M., Pablo, L. E., & Satue, M. (2019). Visual function and retinal changes in patients with bipolar disorder. Retina, 39, 2012–2021. https://doi.org/ 10.1097/IAE.0000000000002252.
  • Garcia-Martin, E., Rodriguez-Mena, D., Herrero, R., Almarcegui, C., Dolz, I., Martin, J., Ara, J. R., Larrosa, J. M., Polo, V., Fernandez, J., & Pablo, L. E. (2013). Neuro-ophthalmologic evaluation, quality of life, and functional disability in patients with MS. Neurology, 81, 76–83. https://doi.org/10.1212/WNL. 0b013e318299ccd9.
  • Gavín, A., Garcia-Martin, E., Garcia-Campayo, J., Vilades, E., Orduna, E., & Satue, M. (2021). The use of optical coherence tomography in the evaluation of patients with bipolar disorder. Archivos de la Sociedad Espa~nola de Oftalmología, 96, 141–151. https://doi.org/10.1016/j.oftal.2020.07.022.
  • Gendelman, O., Amital, H., Bar-On, Y., Ben-Ami Shor, D., Amital, D., Tiosano, S., Shalev, V., Chodick, G., & Weitzman, D (2018). Time to diagnosis of fibromyalgia and factors associated with delayed diagnosis in primary care. Best Practice & Research Clinical Rheumatology, 32, 489–499. https://doi.org/10.1016/j.berh.2019.01.019.
  • Giesecke, T., Williams, D. A., Harris, R. E., Cupps, T. R., Tian, X., Tian, T. X., Gracely, R. H., & Clauw, D. J. (2003). Subgrouping of fibromyalgia patients on the basis of pressure-pain thresholds and psychological factors. Arthritis & Rheumatism, 48, 2916– 2922. https://doi.org/10.1002/art.11272.
  • Gracely, R. H., Petzke, F., Wolf, J. M., & Clauw, D. J. (2002). Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis & Rheumatism, 46, 1333– 1343. https://doi.org/10.1002/art.10225.
  • Groven, N., Fors, E. A., Stunes, A. K., & Reitan, S. K. (2020). MCP-1 is increased in patients with CFS and FM, whilst several other immune markers are significantly lower than healthy controls. Brain, Behavior, & Immunity-Health, 4. https://doi.org/ 10.1016/j.bbih.2020.100067 Article 100067.
  • Häuser, W., Perrot, S., Clauw, D. J., & Fitzcharles, M. (2018). Unravelling Fibromyalgia—Steps Toward Individualized Management. The Journal of Pain, 19, 125–134. https://doi.org/10.1016/j.jpain.2017.08.009.
  • Häuser, W., Sarzi-Puttini, P., & Fitzcharles, M. A. (2019). Fibromyalgia syndrome: Under-, overand misdiagnosis. Clinical and Experimental Rheumatology, 37, S90–S97.
  • Jensen, K. B., Srinivasan, P., Spaeth, R., Tan, Y., Kosek, E., Petzke, F., Carville, S., Fransson, P., Marcus, H., William, S. C. R., Choy, E., Vitton, O., Gracely, R., Ingvar, M., & Kong, J. (2013). Overlapping structural and functional brain changes in patients with long-term exposure to fibromyalgia pain. Arthritis & Rheumatism, 65, 3293–3303. https://doi.org/10.1002/art.38170.
  • Kind, P., Dolan, P., Gudex, C., & Williams, A. (1998). Variations in population health status: results from a United Kingdom national questionnaire survey. British Medical Journal, 316, 736–741. https://doi.org/10.1136/bmj.316.7133.736.
  • Kira, K., & Rendell, L. A. (1992). A Practical Approach to Feature Selection. Machine Learning Proceedings (pp. 249-256). Elsevier.
  • Kishi, S. (2016). Impact of swept source optical coherence tomography on ophthalmology. Taiwan Journal of Ophthalmology, 6, 58– 68. https://doi.org/10.1016/j.tjo.2015.09.002.
  • LoMartire, R., Ang, B. O., Gerdle, B., & Vixner, L. (2019). Psychometric properties of Short Form-36 Health Survey, EuroQol 5- dimensions, and Hospital Anxiety and Depression Scale in patients with chronic pain. Pain, 161, 83–95. https://doi.org/10.1097/j.pain.0000000000001700.
  • Minerbi, A., Gonzalez, E., Brereton, N. J. B., Anjarkouchian, A., Dewar, K., Fitzcharles, M.-A., Chevalier, S., & Shir, Y. (2019). Altered microbiome composition in individuals with fibromyalgia. Pain, 160, 2589–2602. https://doi.org/10.1097/j.pain. 0000000000001640.
  • Montero-Marin, J., Andres-Rodríguez, L., Tops, M., Luciano, J. V., Navarro-Gil, M., Feliu-Soler, A., Lopez-Del-Hoyo, Y., & Garcia-Campayo, J. (2019). Effects of attachment-based compassion therapy (ABCT) on brain-derived neurotrophic factor and low-grade inflammation among fibromyalgia patients: A randomized controlled trial. Scientific Reports, 9, 15639. https://doi. org/10.1038/s41598-019-52260-z.
  • Onuora, S. (2016). Optic nerve damaged in patients with fibromyalgia. Nature Reviews Rheumatology, 12. https://doi.org/10.1038/nrrheum.2016.185 622-622.
  • Pardos-Gascon, E. M., Narambuena, L., Leal-Costa, C., & van-derHofstadt-Roman, C. J. (2021). Differential efficacy between cognitive-behavioral therapy and mindfulness-based therapies for chronic pain: Systematic review. International Journal of Clinical and Health Psychology, 21. https://doi.org/10.1016/j.ijchp.2020.08.001 Article 100197.
  • Paul, J. K., Iype, T. R., D., Hagiwara, Y., Koh, J. W., & Acharya, U. R (2019). Characterization of fibromyalgia using sleep EEG signals with nonlinear dynamical features. Computers in Biology and Medicine, 111. https://doi.org/10.1016/j.compbiomed.2019.103331 Article 103331.
  • Petzold, A., Balcer, L. J., Calabresi, P. A., Costello, F., Frohman, T. C., Frohman, E. M., Martinez-Lapiscina, E. H., Green, A. J., Kardon, R., Outteryck, O., Friedemann, P., Schippling, S., Vermersch, P., Villoslada, P., Balk, L. J., & ERN-EYE, IMSVISUAL (2017). Retinal layer segmentation in multiple sclerosis: A systematic review and meta-analysis. The Lancet Neurology, 16, 797–812. https://doi.org/10.1016/S1474-4422(17)30278-8.
  • Polo, V., Garcia-Martin, E., Bambo, M. P., Pinilla, J., Larrosa, J. M., Satue, M., Otin, S., & Pablo, L. E. (2014). Reliability and validity of Cirrus and Spectralis optical coherence tomography for detecting retinal atrophy in Alzheimer’s disease. Eye, 28, 680–690. https://doi.org/10.1038/eye.2014.51.
  • Prados, G., Miro, E., Martínez, M. P., Sanchez, A. I., Lami, M. J., & Caliz, R. (2020). Combined cognitive-behavioral therapy for fibromyalgia: Effects on polysomnographic parameters and perceived sleep quality. International Journal of Clinical and Health Psychology, 20, 232–242. https://doi.org/10.1016/j.ijchp.2020.04.002.
  • Ratchford, J. N., Quigg, M. E., Conger, A., Frohman, T., Frohman, E., Balcer, L. J., Calabresi, A., & Kerr, D. A. (2009). Optical coherence tomography helps differentiate neuromyelitis optica and MS optic neuropathies. Neurology, 73, 302–308. https://doi.org/10.1212/WNL.0b013e3181af78b8.
  • Rivera, J., & Gonzalez, T. (2004). The Fibromyalgia Impact Questionnaire: A validated Spanish version to assess the health status in women with fibromyalgia. Clinical and Experimental Rheumatology, 22, 554–560.
  • Sanchez-Morla, E. M., Fuentes, J. L., Miguel-Jimenez, J. M., Boquete, L., Ortiz, M., Orduna, E., Satue, M., & Garcia-Martin, E. (2021). Automatic diagnosis of bipolar disorder using optical coherence tomography data and artificial intelligence. Journal of Personalized Medicine, 11. https://doi.org/10.3390/jpm11080803 Article 803.
  • Satue, M., Rodrigo, M. J., Obis, J., Vilades, E., Gracia, H., Otin, S., Fuertes, M. I., Alarcia, R., Crespo, J. A., Polo, V., Larrosa, J. M., Pablo, L. E., & Garcia-Martin, E. (2017). Evaluation of progressive visual dysfunction and retinal degeneration in patients with Parkinson’s disease. Investigative Opthalmology & Visual Science, 58. https://doi.org/10.1167/iovs.16-20460 Article 1151.
  • Satue, M., Seral, M., Otin, S., Alarcia, R., Herrero, R., Bambo, M. P., Fuertes, M. I., Pablo, L. E., & Garcia-Martin, E. (2014). Retinal thinning and correlation with functional disability in patients with Parkinson’s disease. British Journal of Ophthalmology, 98, 350–355. https://doi.org/10.1136/bjophthalmol-2013-304152.
  • Satue, S., Obis, J., Rodrigo, M. J., Otin, S., Fuertes, M. I., Vilades, E., Gracia, H., Ara, J. R., Alarcia, R., Polo, V., Larrosa, J. M., Pablo, L. E., & Garcia-Martin, E. (2016). Optical coherence tomography as a biomarker for diagnosis, progression and prognosis of neurodegenerative diseases. Journal of Ophthalmology, 2016. Article 8503859 https://www.ncbi.nlm.nih. gov/pmc/articles/PMC5093273/pdf/JOPH2016-8503859.pdf.
  • Sawaddiruk, P., Paiboonworachat, S., Chattipakorn, N., & Chattipakorn, S. C. (2017). Alterations of brain activity in fibromyalgia patients. Journal of Clinical Neuroscience, 38, 13–22. https://doi.org/10.1016/j.jocn.2016.12.014.
  • Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). RUSBoost: A Hybrid Approach to Alleviating Class Imbalance. IEEE Transactions on Systems, Man, and Cybernetics -Part A: Systems and Humans, 40, 185–197. https://doi.org/10.1109/TSMCA.2009.2029559.
  • Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., Wei Tan, G. S., Schmetterer, L., Keane, P. A., & Wong, T. Y. (2019). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 103, 167–175. https://doi.org/10.1136/bjophthalmol-2018-313173.
  • Tran, W. T., Jerzak, K., Lu, F.-I., Klein, J., Tabbarah, S., Lagree, A., Wu, T., Rosado-Mendez, I., Law, E., Saednia, K., & Sadeghi-Naini, A. (2019). Personalized breast cancer treatments using artificial intelligence in radiomics and pathomics. Journal of Medical Imaging and Radiation Sciences, 50, S32–S41. https://doi.org/10.1016/j.jmir.2019.07.010.
  • Ulusoy, M. O., Kal, A., Işik-Ulusoy, S., & Kal, €O. (2018). Choroidal thickness in patients with fibromyalgia and correlation with disease severity. Indian Journal of Ophthalmology, 66, 428–432. https://doi.org/10.4103/ijo.IJO_877_17.
  • Wolfe, F., Clauw, D. J., Fitzcharles, M. A., Goldenberg, D. L., Katz, R. S., Mease, P., Russell, A. S., Russell, J., Winfield, J., & Yunus, M. B. (2010). The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care & Research, 62, 600–610. https://doi.org/10.1002/acr.20140.
  • Wolfe, F., Smythe, H. A., Yunus, M. B., Bennett, R. M., Bombardier, C., Goldenberg, D. L., Tugwell, P., Campbell, S. M., Abeles, M., Clark, P., Fam, A. G., Farber, S. J., Fiechtner, J. J., Franklin, M., Gatter, R. A., Hamaty, D., Lessard, J., Lichtbroun, A. S., Masi, A. T., Mccain, G. A., Reynolds, J., Romano, T. J., Russell, J., & Sheon, R. P. (1990). The American College of Rheumatology 1990 criteria for the classification of fibromyalgia. Arthritis & Rheumatism, 33, 160–172. https://doi.org/10.1002/art.1780330203.
  • Yilmaz, U., Kucuk, E., Ulgen, A., Ozkose, A., Demircan, S., Ulusoy, D. M., & Zararsz, G. (2016). Retinal nerve fiber layer and macular thickness measurement in patients with schizophrenia. European Journal of Ophthalmology, 10, 375–378. https://doi.org/10.5301/ejo.5000723.
  • Zhang, J. R., Cao, Y. L., Li, K., Wang, F., Wang, Y. L., Wu, J. J., Pei, S. F., Chen, J., Mao, C. J., & Liu, C. F. (2021). Correlations between retinal nerve fiber layer thickness and cognitive progression in Parkinson’s disease: A longitudinal study. Parkinsonism and Related Disorders, 82, 92–97. https://doi.org/10.1016/j.parkreldis.2020.11.025.