Aplicaciones médicas de las redes sociales. Aspectos específicos de la pandemia de la COVID-19
- Alvarez Mon, M.A. 1
- Rodríguez Quiroga, A. 1
- De Anta, L. 1
- Quintero, J. 1
- 1 Servicio de Psiquiatría y Salud Mental, Hospital Universitario Infanta Leonor, Madrid, España
ISSN: 0304-5412
Año de publicación: 2020
Serie: 13
Número: 23
Páginas: 1305-1310
Tipo: Artículo
Otras publicaciones en: Medicine: Programa de Formación Médica Continuada Acreditado
Resumen
For years, social networks have been incorporated into the day-to-day of the majority of the population. In this context, a new area of knowledge in medicine has been developed: infodemiology. It is defined as the evaluation, with the objective of improving public health, of health-related information that users upload to the network. In addition, social networks offer many possibilities for conducting public health campaigns, accessing patients, or carrying out treatment interventions.
Referencias bibliográficas
- Smith A, Anderson M. Social media use in 2018. Pew Research Center 2018. Disponible en: www.pewresearchcenter.org
- Fox S, Duggan M. Health Online 2013/Pew Research Center. National Survey by the Pew Research Center’s Internet and American Life Project. 2013. Disponible en: www.pewresearchcenter.org
- Eysenbach G. Infodemiology and infoveillance: framework for an emerging set of public health informatics methods to analyze search, communication and publication behavior on the Internet. J Med Internet Res [Internet]. 2009 [citado el 20 de octubre de 2020];11(1):e11. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/ 19329408
- Sinnenberg L, Buttenheim AM, Padrez K, Mancheno C, Ungar L, Merchant RM. Twitter as a tool for health research: a systematic review. Am J Public Health [Internet]. 2017 [citado el 20 de octubre de 2020];107(1): e1-8. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/27854532
- Colditz JB, Chu K-H, Emery SL, Larkin CR, James AE, Welling J, et al. Toward real-time infoveillance of twitter health messages. Am J Public Health [Internet]. 2018 [citado el 20 de octubre de 2020];108(8):1009-14. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29927648
- Sinnenberg L, DiSilvestro CL, Mancheno C, Dailey K, Tufts C, Buttenheim AM, et al. Twitter as a potential data source for cardio-vascular disease research. JAMA Cardiol [Internet]. 2016 [citado el 20 de octubre de 2020];1(9):1032-6. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/27680322
- Álvarez-Mon MA, Llavero-Valero M, Sánchez-Bayona R, Pereira-Sán-chez V, Vallejo-Valdivielso M, Monserrat J, et al. Areas of interest and stigmatic attitudes of the general public in five relevant medical condi-tions: thematic and quantitative analysis using twitter. J Med Internet Res [Internet]. 2019 [citado el 20 de octubre de 2020]; 21(5):e14110. Dispo-nible en: http://www.ncbi.nlm.nih.gov/pubmed/31140438
- Nguyen QC, Brunisholz KD, Yu W, McCullough M, Hanson HA, Litchman ML, et al. Twitter-derived neighborhood characteristics associated with obesity and diabetes. Sci Rep [Internet]. 2017 [cita-do el 20 de octubre de 2020]; 7(1):16425. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29180792
- Gore RJ, Diallo S, Padilla J. You are what you tweet: connecting the geogra-phic variation in america’s obesity rate to twitter content. Meyre D, editor. PLoS One [Internet]. 2015 [citado el 20 de octubre de 2020];10(9):e0133505. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/26332588
- Chunara R, Bouton L, Ayers JW, Brownstein JS. Assessing the online social environment for surveillance of obesity prevalence. Pappalardo F, editor. PLoS One [Internet]. 2013 [citado el 20 de octubre de 2020]; 8(4):e61373. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23637820
- Ireland ME, Chen Q, Schwartz HA, Ungar LH, Albarracin D. Action tweets linked to reduced county-level hiv prevalence in the united states online messages and structural determinants. AIDS Behav [Internet]. 2016 [citado el 19 de octubre de 2020]; 20(6):1256-64. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/26650382
- Husnayain A, Shim E, Fuad A, Su EC-Y. Understanding the com-munity risk perceptions of the COVID-19 outbreak in South Korea: Infodemiology Study. J Med Internet Res [Internet]. 2020 [citado el 20 de octubre de 2020]; 22(9):e19788. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32931446
- Chandrasekaran R, Mehta V, Valkunde T, Moustakas E. Twitter talk on COVID-19: A temporal examination of topics, trends and sentiments (Preprint). J Med Internet Res [Internet]. 2020 [citado el 20 de octubre de 2020]; Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/33006937
- Dugas AF, Hsieh Y-H, Levin SR, Pines JM, Mareiniss DP, Mohareb A, et al. Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Clin Infect Dis [Internet]. 2012. [citado el 20 de octubre de 2020]; 54(4):463-9. Dispo-nible en: http://www.ncbi.nlm.nih.gov/pubmed/22230244
- Cho S, Sohn CH, Jo MW, Shin S-Y, Lee JH, Ryoo SM, et al. Correlation between national influenza surveillance data and google trends in South Korea. Viboud C, editor. PLoS One [Internet]. 2013 [citado el 20 de oc-tubre de 2020];8(12):e81422. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/24339927
- Higgins TS, Wu AW, Sharma D, Illing EA, Rubel K, Ting JY, et al. Co-rrelations of online search engine trends with coronavirus disease (CO-VID-19) incidence: Infodemiology Study. JMIR public Heal Surveill [Internet]. 2020 [citado el 20 de octubre de 2020]; 6(2):e19702. Disponi-ble en: http://www.ncbi.nlm.nih.gov/pubmed/32401211
- Teo AR, Liebow SB, Chan B, Dobscha SK, Graham AL. Reaching those at risk for psychiatric disorders and suicidal ideation: facebook advertise-ments to recruit military veterans. JMIR Ment Heal [Internet]. 2018 [ci-tado el 26 de octubre de 2020];5(3):e10078. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29980498
- Chen JI, Hooker ER, Niederhausen M, E Marsh H, Saha S, Dobscha SK, et al. Social connectedness, depression symptoms, and health service uti-lization: a longitudinal study of Veterans Health Administration patients. Soc Psychiatry Psychiatr Epidemiol [Internet]. 2020 [citado el 26 de oc-tubre de 2020]; 55(5):589-97. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/31691842
- Teo AR, Marsh HE, Forsberg CW, Nicolaidis C, Chen JI, Newsom J, et al. Loneliness is closely associated with depression outcomes and suicidal ideation among military veterans in primary care. J Affect Disord [Inter-net]. [citado el 26 de octubre de 2020]; 230:42-9. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29407537
- Turner-McGrievy GM, Tate DF. Weight loss social support in 140 cha-racters or less: use of an online social network in a remotely delivered weight loss intervention. Transl Behav Med [Internet]. 2013 [citado el 26 de Octubre de 2020]; 3(3):287-94. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/24073180
- Bennell K, Nelligan RK, Schwartz S, Kasza J, Kimp A, Crofts SJ, et al. Behavior change text messages for home exercise adherence in knee osteoarthritis: randomized trial. J Med Internet Res [Internet]. 2020 [citado el 26 de octubre de 2020];22(9):e21749. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32985994
- Nebeker C, Dunseath SE, Linares-Orozco R. A retrospective analysis of NIH-funded digital health research using social media platforms. Digit Heal [Internet]. 2020 [citado el 19 de octubre de 2020]; 6:2055207619901085. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32030195
- Torous J, Onnela J-P, Keshavan M. New dimensions and new tools to realize the potential of RDoC: digital phenotyping via smartphones and connected devices. Transl Psychiatry [Internet]. 2017 [citado el 19 de oc-tubre de 2020];7(3):e1053-e1053. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/28267146
- Insel TR. Digital phenotyping: technology for a new science of behavior. JAMA [Internet]. 2017 [citado el 19 de octubre de 2020]; 318(13):1215-6. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/ 28973224
- Rezaii N, Walker E, Wolff P. A machine learning approach to predicting psychosis using semantic density and latent content analysis. NPJ Schizophr [Internet]. 2019 [citado el 19 de octubre de 2020];5(1):9. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/ 31197184
- Álvarez-Mon MA, Asunsolo Del Barco A, Lahera G, Quintero J, Ferre F, Pereira-Sánchez V, et al. Increasing interest of mass communication me-dia and the general public in the distribution of tweets about mental di-sorders: observational study. J Med Internet Res [Internet]. 2018 [citado el 19 de octubre de 2020]; 20(5):e205. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/29807880
- Barry JM. Pandemics: avoiding the mistakes of 1918. Nature [Internet]. 2009 [citado el 19 de octubre de 2020]; 459(7245):324-5. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/19458695
- Chew C, Eysenbach G. Pandemics in the age of twitter: content analysis of tweets during the 2009 H1N1 outbreak. Sampson M, editor. PLoS One [Internet]. 2010 [citado el 19 de octubre de 2020]; 5(11):e14118. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/ 21124761
- Gozzi N, Tizzani M, Starnini M, Ciulla F, Paolotti D, Panisson A, et al. Collective response to media coverage of the COVID-19 pande-mic on reddit and wikipedia: mixed-methods analysis. J Med Internet Res [Internet]. 2020 [citado el 19 de octubre de 2020]; 22(10):e21597. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/32960775
- Liu M, Caputi TL, Dredze M, Kesselheim AS, Ayers JW. Internet searches for unproven COVID-19 therapies in the United States. JAMA Intern Med [Internet]. [citado el 20 de octubre de 2020]; 180(8):1116. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/ 32347895
- Nekliudov NA, Blyuss O, Cheung KY, Petrou L, Genuneit J, Sus-hentsev N, et al. Excessive media consumption about COVID-19 is as-sociated with increased state anxiety: outcomes of a large online survey in Russia. J Med Internet Res [Internet]. 2020 [citado el 19 de octubre de 2020]; 22(9):e20955. Disponible en: http://www.ncbi.nlm.nih.gov/pub-med/32788143