Prediction of Patient Satisfaction after Treatment of Chronic Neck Pain with Mulligan’s Mobilization

  1. Fernández-Carnero, Josué 122334
  2. Beltrán-Alacreu, Hector 56
  3. Arribas-Romano, Alberto 11
  4. Cerezo-Téllez, Ester 7
  5. Cuenca-Zaldivar, Juan Nicolás 789
  6. Sánchez-Romero, Eleuterio A. 2233
  7. Lerma Lara, Sergio 44
  8. Villafañe, Jorge Hugo 10
  1. 1 Universidad Rey Juan Carlos
    info

    Universidad Rey Juan Carlos

    Madrid, España

    ROR https://ror.org/01v5cv687

  2. 2 Universidad Europea de Madrid
    info

    Universidad Europea de Madrid

    Madrid, España

    ROR https://ror.org/04dp46240

  3. 3 Universidad Europea de Canarias
    info

    Universidad Europea de Canarias

    Orotava, España

    ROR https://ror.org/051xcrt66

  4. 4 Universidad Autónoma de Madrid
    info

    Universidad Autónoma de Madrid

    Madrid, España

    ROR https://ror.org/01cby8j38

  5. 5 Universidad de Castilla-La Mancha
    info

    Universidad de Castilla-La Mancha

    Ciudad Real, España

    ROR https://ror.org/05r78ng12

  6. 6 CranioSPain Research Group, Centro Superior de Estudios Universitarios La Salle
  7. 7 Universidad de Alcalá
    info

    Universidad de Alcalá

    Alcalá de Henares, España

    ROR https://ror.org/04pmn0e78

  8. 8 Instituto de Investigación Sanitaria Puerta de Hierro
    info

    Instituto de Investigación Sanitaria Puerta de Hierro

    Madrid, España

  9. 9 Primary Health Center “El Abajón”
  10. 10 IRCCS Fondazione Don Carlo Gnocchi, Piazzale Morandi 6, 20148 Milan, Italy
Revista:
Life

ISSN: 2075-1729

Any de publicació: 2022

Volum: 13

Número: 1

Pàgines: 48

Tipus: Article

DOI: 10.3390/LIFE13010048 GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Life

Resum

Chronic neck pain is among the most common types of musculoskeletal pain. Manual therapy has been shown to have positive effects on this type of pain, but there are not yet many predictive models for determining how best to apply manual therapy to the different subtypes of neck pain. The aim of this study is to develop a predictive learning approach to determine which basal outcome could give a prognostic value (Global Rating of Change, GRoC scale) for Mulligan’s mobilization technique and to identify the most important predictive factors for recovery in chronic neck pain subjects in four key areas: the number of treatments, time of treatment, reduction of pain, and range of motion (ROM) increase. A prospective cohort dataset of 80 participants with chronic neck pain diagnosed by their family doctor was analyzed. Logistic regression and machine learning modeling techniques (Generalized Boosted Models, Support Vector Machine, kernel, classification and decision trees, random forest and neural networks) were each used to form a prognostic model for each of the nine outcomes obtained before and after intervention: disability—neck disability index (NDI), patient satisfaction (GRoC), quality of life (12-Item Short Form Survey, SF-12), State-Trait Anxiety Inventory (STAI), Beck Depression Inventory (BDI II), pain catastrophizing scale (ECD), kinesiophobia-Tampa scale of kinesiophobia (TSK-11), Pain Intensity Visual Analogue Scale (VAS), and cervical ROM. Pain descriptions from the subjects and pain body diagrams guided the physical examination. The most important predictive factors for recovery in chronic neck pain patients indicated that the more anxiety and the lower the ROM of lateroflexion, the higher the probability of success with the Mulligan concept treatment.

Informació de finançament

This research was funded by the Spanish Ministry of Science and Innovation, the OASIS project (Grant PID2020-113222RB-C21) and the OASIS-T project (Grant PID2020-113222RB-C22).

Finançadors

Referències bibliogràfiques

  • 1. Kazeminasab, S.; Nejadghaderi, S.A.; Amiri, P.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.-A.; Safiri, S. Neck Pain: Global Epidemiology, Trends and Risk Factors. BMC Musculoskelet. Disord. 2022, 23, 26. https://doi.org/10.1186/s12891- 021-04957-4.
  • 2. Rashid, M.; Kristofferzon, M.-L.; Nilsson, A. Predictors of Return to Work among Women with Long-Term Neck/Shoulder and/or Back Pain: A 1-Year Prospective Study. PLoS ONE 2021, 16, e0260490. https://doi.org/10.1371/journal.pone.0260490.
  • 3. Hey, H.W.D.; Lim, J.X.Y.; Ong, J.Z.; Luo, N. Epidemiology of Neck Pain and Its Impact on Quality-of-Life-A Population-Based, Cross Sectional Study in Singapore. Spine 2021, 46, 1572–1580. https://doi.org/10.1097/BRS.0000000000004071.
  • 4. Safiri, S.; Kolahi, A.-A.; Hoy, D.; Buchbinder, R.; Mansournia, M.A.; Bettampadi, D.; Ashrafi-Asgarabad, A.; Almasi-Hashiani, A.; Smith, E.; Sepidarkish, M.; et al. Global, Regional, and National Burden of Neck Pain in the General Population, 1990–2017: Systematic Analysis of the Global Burden of Disease Study 2017. BMJ 2020, 368, m791. https://doi.org/10.1136/bmj.m791.
  • 5. Deyo, R.A.; Mirza, S.K.; Martin, B.I. Back Pain Prevalence and Visit Rates: Estimates from U.S. National Surveys, 2002. Spine 2006, 31, 2724–2727. https://doi.org/10.1097/01.brs.0000244618.06877.cd.
  • 6. Fernández-de-las-Peñas, C.; Hernández-Barrera, V.; Alonso-Blanco, C.; Palacios-Ceña, D.; Carrasco-Garrido, P.; JiménezSánchez, S.; Jiménez-García, R. Prevalence of Neck and Low Back Pain in Community-Dwelling Adults in Spain: A PopulationBased National Study. Spine 2011, 36, E213–E219. https://doi.org/10.1097/BRS.0b013e3181d952c2.
  • 7. Côté, P.; Kristman, V.; Vidmar, M.; Van Eerd, D.; Hogg-Johnson, S.; Beaton, D.; Smith, P.M. The Prevalence and Incidence of Work Absenteeism Involving Neck Pain: A Cohort of Ontario Lost-Time Claimants. Spine 2008, 33, S192–S198. https://doi.org/10.1097/BRS.0b013e3181644616.
  • 8. Lee, H.; Hübscher, M.; Moseley, G.L.; Kamper, S.J.; Traeger, A.C.; Mansell, G.; McAuley, J.H. How Does Pain Lead to Disability? A Systematic Review and Meta-Analysis of Mediation Studies in People with Back and Neck Pain. Pain 2015, 156, 988–997. https://doi.org/10.1097/j.pain.0000000000000146.
  • 9. Mesas, A.E.; González, A.D.; Mesas, C.E.; de Andrade, S.M.; Magro, I.S.; del Llano, J. The Association of Chronic Neck Pain, Low Back Pain, and Migraine with Absenteeism Due to Health Problems in Spanish Workers. Spine 2014, 39, 1243–1253. https://doi.org/10.1097/BRS.0000000000000387.
  • 10. Cohen, S.P. Epidemiology, Diagnosis, and Treatment of Neck Pain. Mayo Clin. Proc. 2015, 90, 284–299. https://doi.org/10.1016/j.mayocp.2014.09.008.
  • 11. Coenen, P.; Mathiassen, S.; van der Beek, A.J.; Hallman, D.M. Correction of Bias in Self-Reported Sitting Time among Office Workers—A Study Based on Compositional Data Analysis. Scand. J. Work Environ. Health 2020, 46, 32–42. https://doi.org/10.5271/sjweh.3827.
  • 12. Muscolino, J. Upper Crossed Syndrome. J. Aust. Tradit. Med. Soc. 2015, 21, 80.
  • 13. Gu, S.-Y.; Hwangbo, G.; Lee, J.-H. Relationship between Position Sense and Reposition Errors According to the Degree of Upper Crossed Syndrome. J. Phys. Ther. Sci. 2016, 28, 438–441. https://doi.org/10.1589/jpts.28.438.
  • 14. Cho, J.; Lee, E.; Lee, S. Upper Cervical and Upper Thoracic Spine Mobilization versus Deep Cervical Flexors Exercise in Individuals with Forward Head Posture: A Randomized Clinical Trial Investigating Their Effectiveness. J. Back Musculoskelet. Rehabil. 2019, 32, 595–602. https://doi.org/10.3233/BMR-181228.
  • 15. Chen, N.; Fong, D.Y.T.; Wong, J.Y.H. Secular Trends in Musculoskeletal Rehabilitation Needs in 191 Countries and Territories From 1990 to 2019. JAMA Netw. Open 2022, 5, e2144198. https://doi.org/10.1001/jamanetworkopen.2021.44198.
  • 16. Childress, M.A.; Stuek, S.J. Neck Pain: Initial Evaluation and Management. Am. Fam. Physician 2020, 102, 150–156.
  • 17. Cohen, S.P.; Hooten, W.M. Advances in the Diagnosis and Management of Neck Pain. BMJ 2017, 358, j3221. https://doi.org/10.1136/bmj.j3221.
  • 18. Buyukturan, O.; Buyukturan, B.; Sas, S.; Karartı, C.; Ceylan, İ. The Effect of Mulligan Mobilization Technique in Older Adults with Neck Pain: A Randomized Controlled, Double-Blind Study. Pain Res. Manag. 2018, 2018, 1–7. https://doi.org/10.1155/2018/2856375.
  • 19. Castaldo, M.; Ge, H.Y.; Chiarotto, A.; Villafañe, J.H.; Arendt-Nielsen, L. Myofascial Trigger Points in Patients with WhiplashAssociated Disorders and Mechanical Neck Pain. Pain Med. 2014, 15, 842–9. https://doi.org/10.1111/pme.12429.
  • 20. Popescu, A.; Lee, H. Neck Pain and Lower Back Pain. Med. Clin. North Am. 2020, 104, 279–292. https://doi.org/10.1016/j.mcna.2019.11.003.
  • 21. Cerezo-Téllez, E.; Torres-Lacomba, M.; Fuentes-Gallardo, I.; Perez-Muñoz, M.; Mayoral-del-Moral, O.; Lluch-Girbés, E.; PrietoValiente, L.; Falla, D. Effectiveness of Dry Needling for Chronic Nonspecific Neck Pain: A Randomized, Single-Blinded, Clinical Trial. Pain 2016, 157, 1905–1917.
  • 22. de Sire, A.; Marotta, N.; Ferrillo, M.; Agostini, F.; Sconza, C.; Lippi, L.; Respizzi, S.; Giudice, A.; Invernizzi, M.; Ammendolia, A. Oxygen-Ozone Therapy for Reducing Pro-Inflammatory Cytokines Serum Levels in Musculoskeletal and Temporomandibular Disorders: A Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 2528. https://doi.org/10.3390/ijms23052528.
  • 23. Rodríguez-Sanz, J.; Malo-Urriés, M.; Lucha-López, M.O.; Pérez-Bellmunt, A.; Carrasco-Uribarren, A.; Fanlo-Mazas, P.; Corralde-Toro, J.; Hidalgo-García, C. Effects of the Manual Therapy Approach of Segments C0-1 and C2-3 in the Flexion-Rotation Test in Patients with Chronic Neck Pain: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, E753. https://doi.org/10.3390/ijerph18020753.
  • 24. Sterling, M.; Jull, G.; Wright, A. Cervical Mobilisation: Concurrent Effects on Pain, Sympathetic Nervous System Activity and Motor Activity. Man Ther. 2001, 6, 72–81. https://doi.org/10.1054/math.2000.0378.
  • 25. Smith, M.S.; Olivas, J.; Smith, K. Manipulative Therapies: What Works. Am. Fam. Physician 2019, 99, 248–252.
  • 26. Negrini, S.; Imperio, G.; Villafañe, J.H.; Negrini, F.; Zaina, F. Systematic reviews of physical and rehabilitation medicine Cochrane contents. Part 1. Disabilities due to spinal disorders and pain syndromes in adults. Eur. J. Phys. Rehabil. Med. 2013, 49, 597–609.
  • 27. Bertozzi, L.; Gardenghi, I.; Turoni, F.; Villafañe, J.H.; Capra, F.; Guccione, A.A.; Pillastrini, P. Effect of Therapeutic Exercise on Pain and Disability in the Management of Chronic Nonspecific Neck Pain: Systematic Review and Meta-Analysis of Randomized Trials. Phys. Ther. 2013, 93, 1026–1036. https://doi.org/10.2522/ptj.20120412.
  • 28. Liew, B.X.W.; Peolsson, A.; Rugamer, D.; Wibault, J.; Löfgren, H.; Dedering, A.; Zsigmond, P.; Falla, D. Clinical Predictive Modelling of Post-Surgical Recovery in Individuals with Cervical Radiculopathy: A Machine Learning Approach. Sci. Rep. 2020, 10, 16782. https://doi.org/10.1038/s41598-020-73740-7.
  • 29. Adam, G.; Rampášek, L.; Safikhani, Z.; Smirnov, P.; Haibe-Kains, B.; Goldenberg, A. Machine Learning Approaches to Drug Response Prediction: Challenges and Recent Progress. NPJ Precis. Oncol. 2020, 4, 19. https://doi.org/10.1038/s41698-020-0122-1.
  • 30. Peek, N.; Combi, C.; Marin, R.; Bellazzi, R. Thirty Years of Artificial Intelligence in Medicine (AIME) Conferences: A Review of Research Themes. Artif. Intell. Med. 2015, 65, 61–73. https://doi.org/10.1016/j.artmed.2015.07.003.
  • 31. Ayodele, T. Machine Learning Overview. In; 2010 ISBN 978-953-307-034-6.
  • 32. Sanchez-Pinto, L.N.; Venable, L.R.; Fahrenbach, J.; Churpek, M.M. Comparison of Variable Selection Methods for Clinical Predictive Modeling. Int. J. Med. Inform. 2018, 116, 10–17. https://doi.org/10.1016/j.ijmedinf.2018.05.006.
  • 33. Weng, S.F.; Reps, J.; Kai, J.; Garibaldi, J.M.; Qureshi, N. Can Machine-Learning Improve Cardiovascular Risk Prediction Using Routine Clinical Data? PLoS ONE 2017, 12, e0174944. https://doi.org/10.1371/journal.pone.0174944.
  • 34. Ferrillo, M.; Migliario, M.; Marotta, N.; Fortunato, F.; Bindi, M.; Pezzotti, F.; Ammendolia, A.; Giudice, A.; Foglio Bonda, P.L.; de Sire, A. Temporomandibular Disorders and Neck Pain in Primary Headache Patients: A Retrospective Machine Learning Study. Acta Odontol. Scand. 2022, 1–7. https://doi.org/10.1080/00016357.2022.2105945.
  • 35. Steyerberg, E.W.; Moons, K.G.M.; van der Windt, D.A.; Hayden, J.A.; Perel, P.; Schroter, S.; Riley, R.D.; Hemingway, H.; Altman, D.G.; The PROGRESS Group. Prognosis Research Strategy (PROGRESS) 3: Prognostic Model Research. PLoS Med. 2013, 10, e1001381. https://doi.org/10.1371/journal.pmed.1001381.
  • 36. Tack, C. Artificial Intelligence and Machine Learning | Applications in Musculoskeletal Physiotherapy. Musculoskelet. Sci. Pract. 2019, 39, 164–169. https://doi.org/10.1016/j.msksp.2018.11.012.
  • 37. da Silva, T.; Mills, K.; Brown, B.T.; Herbert, R.D.; Maher, C.G.; Hancock, M.J. Risk of Recurrence of Low Back Pain: A Systematic Review. J. Orthop. Sports Phys. Ther. 2017, 47, 305–313. https://doi.org/10.2519/jospt.2017.7415.
  • 38. da Costa, M.C.L.; Maher, C.G.; Hancock, M.J.; McAuley, J.H.; Herbert, R.D.; Costa, L.O.P. The Prognosis of Acute and Persistent Low-Back Pain: A Meta-Analysis. CMAJ 2012, 184, E613–E624. https://doi.org/10.1503/cmaj.111271.
  • 39. Wong, J.J.; Côté, P.; Quesnele, J.J.; Stern, P.J.; Mior, S.A. The Course and Prognostic Factors of Symptomatic Cervical Disc Herniation with Radiculopathy: A Systematic Review of the Literature. Spine J. 2014, 14, 1781–1789. https://doi.org/10.1016/j.spinee.2014.02.032.
  • 40. Kahile, M. Artificial Intelligence (AI) and Machine Learning (ML) in Clinical Practice and Physiotherapy. Ann. Med. Health Sci. Res. 2021, 11, 158–159.
  • 41. Oude Nijeweme-d’Hollosy, W.; van Velsen, L.; Poel, M.; Groothuis-Oudshoorn, C.G.M.; Soer, R.; Hermens, H. Evaluation of Three Machine Learning Models for Self-Referral Decision Support on Low Back Pain in Primary Care. Int. J. Med. Inform. 2018, 110, 31–41. https://doi.org/10.1016/j.ijmedinf.2017.11.010.
  • 42. Tschuggnall, M.; Grote, V.; Pirchl, M.; Holzner, B.; Rumpold, G.; Fischer, M.J. Machine Learning Approaches to Predict Rehabilitation Success Based on Clinical and Patient-Reported Outcome Measures. Inform. Med. Unlocked 2021, 24, 100598. https://doi.org/10.1016/j.imu.2021.100598.
  • 43. Durve, I.; Ghuge, S.; Patil, S.; Kalbande, D. Machine Learning Approach for Physiotherapy Assessment. In Proceedings of the 2019 International Conference on Advances in Computing, Communication and Control (ICAC3), Mumbai, India, 20–21 December 2019; pp. 1–5.
  • 44. Ortego, G.; Villafañe, J.H.; Doménech-García, V.; Berjano, P.; Bertozzi, L.; Herrero, P. Is There a Relationship between Psychological Stress or Anxiety and Chronic Nonspecific Neck-Arm Pain in Adults? A Systematic Review and Meta-Analysis. J. Psychosom. Res. 2016, 90, 70–81.
  • 45. Wolfe, F.; Smythe, H.A.; Yunus, M.B.; Bennett, R.M.; Bombardier, C.; Goldenberg, D.L.; Tugwell, P.; Campbell, S.M.; Abeles, M.; Clark, P. The American College of Rheumatology 1990 Criteria for the Classification of Fibromyalgia. Report of the Multicenter Criteria Committee. Arthritis Rheum. 1990, 33, 160–172. https://doi.org/10.1002/art.1780330203.
  • 46. Boonstra, A.M.; Schiphorst Preuper, H.R.; Reneman, M.F.; Posthumus, J.B.; Stewart, R.E. Reliability and Validity of the Visual Analogue Scale for Disability in Patients with Chronic Musculoskeletal Pain. Int. J. Rehabil. Res. 2008, 31, 165–169. https://doi.org/10.1097/MRR.0b013e3282fc0f93.
  • 47. Gómez-Pérez, L.; López-Martínez, A.E.; Ruiz-Párraga, G.T. Psychometric Properties of the Spanish Version of the Tampa Scale for Kinesiophobia (TSK). J. Pain 2011, 12, 425–435. https://doi.org/10.1016/j.jpain.2010.08.004.
  • 48. Andrade Ortega, J.A.; Delgado Martínez, A.D.; Almécija Ruiz, R. Validation of the Spanish Version of the Neck Disability Index. Spine 2010, 35, E114–E118. https://doi.org/10.1097/BRS.0b013e3181afea5d.
  • 49. Guillén-Riquelme, A.; Buela-Casal, G. Meta-analysis of group comparison and meta-analysis of reliability generalization of the State-Trait Anxiety Inventory Questionnaire (STAI). Rev. Esp. Salud Publica 2014, 88, 101–112. https://doi.org/10.4321/S1135- 57272014000100007.
  • 50. Valdés, C.; Morales-Reyes, I.; Pérez, J.C.; Medellín, A.; Rojas, G.; Krause, M. Psychometric properties of a spanish version of the Beck depression inventory IA. Rev. Med. Chile 2017, 145, 1005–1012. https://doi.org/10.4067/s0034-98872017000801005.
  • 51. Darnall, B.D.; Sturgeon, J.A.; Cook, K.F.; Taub, C.J.; Roy, A.; Burns, J.W.; Sullivan, M.; Mackey, S.C. Development and Validation of a Daily Pain Catastrophizing Scale. J. Pain 2017, 18, 1139–1149. https://doi.org/10.1016/j.jpain.2017.05.003.
  • 52. Manning, D.M.; Dedrick, G.S.; Sizer, P.S.; Brismée, J.-M. Reliability of a Seated Three-Dimensional Passive Intervertebral Motion Test for Mobility, End-Feel, and Pain Provocation in Patients with Cervicalgia. J. Man. Manip. Ther. 2012, 20, 135–141. https://doi.org/10.1179/2042618611Y.0000000023.
  • 53. Young, I.A.; Dunning, J.; Butts, R.; Mourad, F.; Cleland, J.A. Reliability, Construct Validity, and Responsiveness of the Neck Disability Index and Numeric Pain Rating Scale in Patients with Mechanical Neck Pain without Upper Extremity Symptoms. Physiother. Theory Pract. 2019, 35, 1328–1335. https://doi.org/10.1080/09593985.2018.1471763.
  • 54. Kubas, C.; Chen, Y.-W.; Echeverri, S.; McCann, S.L.; Denhoed, M.J.; Walker, C.J.; Kennedy, C.N.; Reid, W.D. Reliability and Validityof Cervical Range of Motion and Muscle Strength Testing. J. Strength Cond. Res. 2017, 31, 1087–1096.
  • 55. Boyles, R.E.; Walker, M.J.; Young, B.A.; Strunce, J.; Wainner, R.S. The Addition of Cervical Thrust Manipulations to a Manual Physical Therapy Approach in Patients Treated for Mechanical Neck Pain: A Secondary Analysis. J. Orthop. Sports Phys. Ther. 2010, 40, 133–140. https://doi.org/10.2519/jospt.2010.3106.
  • 56. Cleland, J.A.; Glynn, P.; Whitman, J.M.; Eberhart, S.L.; MacDonald, C.; Childs, J.D. Short-Term Effects of Thrust versus Nonthrust Mobilization/Manipulation Directed at the Thoracic Spine in Patients with Neck Pain: A Randomized Clinical Trial. Phys. Ther. 2007, 87, 431–440. https://doi.org/10.2522/ptj.20060217.
  • 57. Sánchez Romero, E.A.; Fernandez-Carnero, J.; Calvo-Lobo, C.; Sáez, V.O.; Caballero, V.B.; Pecos-Martín, D. Is a Combination of Exercise and Dry Needling Effective for Knee OA? Pain Med. 2019, 21, 349–363. https://doi.org/10.1093/pm/pnz036.
  • 58. Fischer, D.; Stewart, A.L.; Bloch, D.A.; Lorig, K.; Laurent, D.; Holman, H. Capturing the Patient’s View of Change as a Clinical Outcome Measure. JAMA 1999, 282, 1157–1162.
  • 59. Jaeschke, R.; Singer, J.; Guyatt, G.H. Measurement of Health Status: Ascertaining the Minimal Clinically Important Difference. Control. Clin. Trials 1989, 10, 407–415. https://doi.org/10.1016/0197-2456(89)90005-6.
  • 60. Ware, J.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of Scales and Preliminary Tests of Reliability and Validity. Med. Care 1996, 34, 220–233. https://doi.org/10.1097/00005650-199603000-00003.
  • 61. Spielberger, C.D.; Gorsuch, R.L.; Lushene, R.E. STAI. Cuestionario de Ansiedad Estado-Rasgo, 7th ed.; TEA Ediciones: Madrid, Spain, 2008.
  • 62. Guillén-Riquelme, A.; Buela-Casal, G. [Psychometric Revision and Differential Item Functioning in the State Trait Anxiety Inventory (STAI)]. Psicothema 2011, 23, 510–515.
  • 63. Sanz, J. 50 Years of the Beck Depression Inventory: Tips for Using Spanish Adaptation the BDI-II in Clinical Practice. Pap. Psicol. 2013, 34, 161–168.
  • 64. Bonilla, J.; Bernal, G.; Santos, A.; Santos, D. A Revised Spanish Version of the Beck Depression Inventory: Psychometric Properties with a Puerto Rican Sample of College Students. J. Clin. Psychol. 2004, 60, 119–130. https://doi.org/10.1002/jclp.10195.
  • 65. Vega-Dienstmaier, J.; Coronado-Molina, Ó.; Mazzotti, G. Validez de Una Versión En Español Del Inventario de Depresión de Beck En Pacientes Hospitalizados de Medicina General. Rev. Neuro Psiquiatr. 2014, 77, 95.
  • 66. García Campayo, J.; Rodero, B.; Alda, M.; Sobradiel, N.; Montero, J.; Moreno, S. [Validation of the Spanish Version of the Pain Catastrophizing Scale in Fibromyalgia]. Med. Clín. 2008, 131, 487–492.
  • 67. Sánchez Romero, E.A.; Lim, T.; Villafañe, J.H.; Boutin, G.; Riquelme Aguado, V.; Martin Pintado-Zugasti, A.; Alonso Pérez, J.L.; Fernández Carnero, J. The Influence of Verbal Suggestion on Post-Needling Soreness and Pain Processing after Dry Needling Treatment: An Experimental Study. Int. J. Environ. Res. Public Health 2021, 18, 4206.
  • 68. Parazza, S.; Vanti, C.; Reilly, C.O.; Villafañe, J.H.; Tricás Moreno, J.M.; Estébanez De Miguel, E. The relationship between cervical flexor endurance, cervical extensor endurance, VAS, and disability in subjects with neck pain. Chiropr. Man. Ther. 2014, 22, 10. https://doi.org/10.1186/2045-709X-22-10.
  • 69. Price, D.D.; McGrath, P.A.; Rafii, A.; Buckingham, B. The Validation of Visual Analogue Scales as Ratio Scale Measures for Chronic and Experimental Pain. Pain 1983, 17, 45–56. https://doi.org/10.1016/0304-3959(83)90126-4.
  • 70. Alghadir, A.; Anwer, S.; Iqbal, A.; Iqbal, Z. Test–Retest Reliability, Validity, and Minimum Detectable Change of Visual Analog, Numerical Rating, and Verbal Rating Scales for Measurement of Osteoarthritic Knee Pain. J. Pain Res. 2018, 11, 851–856. https://doi.org/10.2147/JPR.S158847.
  • 71. Pringle, R.K. Intra-Instrument Reliability of 4 Goniometers. J. Chiropr. Med. 2003, 2, 91–95. https://doi.org/10.1016/S0899- 3467(07)60051-2.
  • 72. Esteban-González, P.; Sánchez-Romero, E.A.; Villafañe, J.H. Analysis of the Active Measurement Systems of the Thoracic Range of Movements of the Spine: A Systematic Review and a Meta-Analysis. Sensors 2022, 22, 3042
  • 73. Arrindell, W.A.; Van der Ende, J. An Empirical Test of the Utility of the Observations-to-Variables Ratio in Factor and Components Analysis. Appl.Psychol. Meas. 1985, 9, 165–178. https://doi.org/10.1177/014662168500900205.
  • 74. Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A Simulation Study of the Number of Events per Variable in Logistic Regression Analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. https://doi.org/10.1016/s0895-4356(96)00236-3.
  • 75. Breiman, L. Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author). Stat. Sci. 2001, 16, 199– 231. https://doi.org/10.1214/ss/1009213726.
  • 76. Berk, R.; Brown, L.; Buja, A.; Zhang, K.; Zhao, L. Valid Post-Selection Inference. Ann. Statist. 2013, 41, 802–837. https://doi.org/10.1214/12-AOS1077.
  • 77. Nielsen, A.; Binding, A.; Ahlbrandt-Rains, C.; Boeker, M.; Feuerriegel, S.; Vach, W. Exploring Conceptual Preprocessing for Developing Prognostic Models: A Case Study in Low Back Pain Patients. J. Clin. Epidemiol. 2020, 122, 27–34. https://doi.org/10.1016/j.jclinepi.2020.02.005.
  • 78. Sturgeon, J.A.; Tieu, M.M.; Jastrzab, L.E.; McCue, R.; Gandhi, V.; Mackey, S.C. Nonlinear Effects of Noxious Thermal Stimulation and Working Memory Demands on Subjective Pain Perception. Pain Med. 2015, 16, 1301–1310. https://doi.org/10.1111/pme.12774.
  • 79. Snodgrass, S.J.; Cleland, J.A.; Haskins, R.; Rivett, D.A. The Clinical Utility of Cervical Range of Motion in Diagnosis, Prognosis, and Evaluating the Effects of Manipulation: A Systematic Review. Physiotherapy 2014, 100, 290–304. https://doi.org/10.1016/j.physio.2014.04.007.
  • 80. Saavedra-Hernández, M.; Ssavedra-Hernández, M.; Castro-Sánchez, A.M.; Fernández-de-Las-Peñas, C.; Cleland, J.A.; OrtegaSantiago, R.; Arroyo-Morales, M. Predictors for Identifying Patients with Mechanical Neck Pain Who Are Likely to Achieve Short-Term Success with Manipulative Interventions Directed at the Cervical and Thoracic Spine. J. Manip. Physiol. Ther. 2011, 34, 144–152. https://doi.org/10.1016/j.jmpt.2011.02.011.
  • 81. Kanaan, S.F.; Almhdawi, K.A.; Khader, Y.S.; Jain, T.K.; Jaber, A.F.; Almomani, F. Predictors of Neck Disability among Undergraduate Students: A Cross-Sectional Study. Work 2022, 72, 1119–1128. https://doi.org/10.3233/WOR-213643.
  • 82. Cleland, J.A.; Childs, J.D.; Fritz, J.M.; Whitman, J.M.; Eberhart, S.L. Development of a Clinical Prediction Rule for Guiding Treatment of a Subgroup of Patients with Neck Pain: Use of Thoracic Spine Manipulation, Exercise, and Patient Education. Phys. Ther. 2007, 87, 9–23. https://doi.org/10.2522/ptj.20060155.
  • 83. Hanney, W.J.; Kolber, M.J.; George, S.Z.; Young, I.; Patel, C.K.; Cleland, J.A. Development of a Preliminary Clinical Prediction Rule to Identify Patients with Neck Pain That May Benefit from a Standardized Program of Stretching and Muscle Performance Exercise: A Prospective Cohort Study. Int. J. Sports Phys. Ther. 2013, 8, 756–776.
  • 84. Bohman, T.; Bottai, M.; Björklund, M. Predictive Models for Short-Term and Long-Term Improvement in Women under Physiotherapy for Chronic Disabling Neck Pain: A Longitudinal Cohort Study. BMJ Open 2019, 9, e024557. https://doi.org/10.1136/bmjopen-2018-024557.
  • 85. Rashid, M.; Kristofferzon, M.-L.; Heiden, M.; Nilsson, A. Factors Related to Work Ability and Well-Being among Women on Sick Leave Due to Long-Term Pain in the Neck/Shoulders and/or Back: A Cross-Sectional Study. BMC Public Health 2018, 18, 672. https://doi.org/10.1186/s12889-018-5580-9.
  • 86. Svedmark, Å.; Björklund, M.; Häger, C.K.; Sommar, J.N.; Wahlström, J. Impact of Workplace Exposure and Stress on Neck Pain and Disabilities in Women-A Longitudinal Follow-up After a Rehabilitation Intervention. Ann. Work Expo. Health 2018, 62, 591– 603. https://doi.org/10.1093/annweh/wxy018.
  • 87. Cole, L.J.; Farrell, M.J.; Gibson, S.J.; Egan, G.F. Age-Related Differences in Pain Sensitivity and Regional Brain Activity Evoked by Noxious Pressure. Neurobiol. Aging 2010, 31, 494–503. https://doi.org/10.1016/j.neurobiolaging.2008.04.012.
  • 88. Bohman, T.; Alfredsson, L.; Jensen, I.; Hallqvist, J.; Vingård, E.; Skillgate, E. Does a Healthy Lifestyle Behaviour Influence the Prognosis of Low Back Pain among Men and Women in a General Population? A Population-Based Cohort Study. BMJ Open 2014, 4, e005713. https://doi.org/10.1136/bmjopen-2014-005713.