La microbiota intestinal en la salud y en la enfermedad

  1. Ortega, M.Á 1
  2. García Montero, C. 1
  3. Fraile Martínez, O. 1
  4. Monserrat, J. 1
  5. Álvarez de Mon Soto, Melchor
  1. 1 Departamento de Medicina y Especialidades Médicas. Universidad de Alcalá. Alcalá de Henares. Madrid. España Instituto de Investigaciones Sanitarias Ramón y Cajal (IRYCIS). Madrid. España
Revista:
Medicine: Programa de Formación Médica Continuada Acreditado

ISSN: 0304-5412

Año de publicación: 2022

Título del ejemplar: Actualización clínico-terapéutica (III)

Serie: 13

Número: 69

Páginas: 4054-4063

Tipo: Artículo

Otras publicaciones en: Medicine: Programa de Formación Médica Continuada Acreditado

Resumen

In the last two decades, we have borne witness to how knowledge on the gut microbiota—that large, dynamic ecosystem that forms part of our body's functions—has seen exponential growth in the scientific literature. Multiple studies have focused on the microbiota as an indicator of an individual's health status and have proposed designing treatment strategies aimed at it. All of this is applied to very diverse areas of medicine, both in various inflammatory and metabolic diseases, cancer, and more, such as mental health. The number of metabolic actions the microbial ecosystem executes and regulates is a fascinating field of study to be able to better understand both an individual's homeostasis and different pathological mechanisms.

Referencias bibliográficas

  • Baquero F, Nombela C. The microbiome as a human organ. Clin Microbiol Infect. 2012l;18Suppl4:2-4.
  • Neu AT, Allen EE, Roy K. Defining and quantifying the core microbiome: Challenges and prospects. Proc Natl Acad Sci U S A. 2021;118(51):e2104429118.
  • Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:36-44.
  • Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14.
  • Zong X, Fu J, Xu B, Wang Y, Jin M. Interplay between gut microbiota and antimicrobial peptides. Anim Nutr. 2020;6(4):389-96.
  • Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1-24.
  • Hernández MAG, Canfora EE, Jocken JWE, Blaak EE. The short-chain fatty acid acetate in body weight control and insulin sensitivity. Nutrients. 2019;11(8):1943.
  • Liu H, Wang J, He T, Becker S, Zhang G, Li D. Butyrate: A double-edged sword for health? Adv Nutr. 2018;9(1):21-9.
  • Yasuda K, Nakanishi K, Tsutsui H. Interleukin-18 in health and disease. Int J Mol Sci. 2019;20(3):649.
  • Nogal A, Louca P, Zhang X, Wells PM, Steves CJ, Spector TD. Circulating levels of the short-chain fatty acid acetate mediate the effect of the gut microbiome on visceral fat. Front Microbiol. 2021;12:711359.
  • Erny D, Dokalis N, Mezö C, Castoldi A, Mossad O, Staszewski O. Microbiota-derived acetate enables the metabolic fitness of the brain innate immune system during health and disease. Cell Metab. 2021;33(11):2260-76.
  • Hosseini E, Grootaert C, Verstraete W, Van de Wiele T. Propionate as a health-promoting microbial metabolite in the human gut. Nutr Rev. 2011;69(5):245-58.
  • Morowitz MJ, Carlisle EM, Alverdy JC. Contributions of intestinal bacteria to nutrition and metabolism in the critically Ill. Surg Clin North Am. 2011;91(4):771-85.
  • Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional roles of B-vitamins in the gut and gut microbiome. Mol Nutr Food Res. 2020;64(18):e2000426.
  • Park J, Hosomi K, Kawashima H, Chen YA, Mohsen A, Ohno H. Dietary vitamin B1 intake influences gut microbial community and the consequent production of short-chain fatty acids. Nutrients. 2022; 14(10):2078.
  • Winston JA, Theriot CM. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11(2):158-71.
  • Ortega MA, Álvarez Mon MA, García Montero C, Fraile Martínez O, Guijarro LG, Lahera G. Gut microbiota metabolites in major depressive disorder-deep insights into their pathophysiological role and potential translational applications. Metabolites. 2022;12(1):50.
  • Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716-24.
  • Paeslack N, Mimmler M, Becker S, Gao Z, Khuu MP, Mann A. Microbiota-derived tryptophan metabolites in vascular inflammation and cardiovascular disease. Amino Acids. 2022; 54(10):1339-56.
  • Su X, Gao Y, Yang R. Gut microbiota-derived tryptophan metabolites maintain gut and systemic homeostasis. Cells. 2022;11(15):2296.
  • Cani PD. Crosstalk between the gut microbiota and the endocannabinoid system: impact on the gut barrier function and the adipose tissue. Clin Microbiol Infect. 2012;18 Suppl4:50-3.
  • Si J, Kang H, You HJ, Ko GP. Revisiting the role of Akkermansia muciniphila as a therapeutic bacterium. Gut Microbes. 2022;14(1):2078619.
  • Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264-76.
  • Reigstad CS, Salmonson CE, Rainey JF, Szurszewski JH, Linden DR, Sonnenburg JL. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395-403.
  • Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LMJ. The Interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatment strategies. Nutrients. 2021;13(3):1-14.
  • Zhang M, Wu C. The relationship between intestinal goblet cells and the immune response. Biosci Rep. 2020;40(10):20201471.
  • Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO molecular medicine. 2013;5(10):1465-83.
  • García Montero C, Fraile Martínez O, Gómez Lahoz AM, Pekarek L, Castellanos AJ, Noguerales Fraguas F. Nutritional com- ponents in western diet versus mediterranean diet at the gut microbiota-immune system interplay. Implications for health and disease. Nutrients. 2021;13(2):1-53.
  • Gao J, Xu K, Liu H, Liu G, Bai M, Peng C. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13.
  • Hoyles L, Snelling T, Umlai UK, Nicholson JK, Carding SR, Glen RC. Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome. Microbiome. 2018; 21;6(1):55.
  • Appleton J. The gut-brain axis: Influence of microbiota on mood and mental health. Integr Med (Encinitas). 2018;17(4):28-32.
  • Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203-9.
  • Li H, Cao Y. Lactic acid bacterial cell factories for gamma-aminobutyric acid. Amino Acids. 2010;39(5):1107-16.
  • Cui Y, Miao K, Niyaphorn S, Qu X. Production of gamma-aminobutyric acid from lactic acid bacteria: A systematic review. Int J Mol Sci. 2020;21(3):995.
  • Meccariello R. Endocannabinoid system in health and disease: Current situation and future perspectives. Int J Mol Sci. 2020;21(10):3549.
  • Cani PD, Geurts L, Matamoros S, Plovier H, Duparc T. Glucose metabolism: Focus on gut microbiota, the endocannabinoid system and beyond. Diabetes Metab. 2014;40(4):246-57.
  • Muccioli GG, Naslain D, Bäckhed F, Reigstad CS, Lambert DM, Delzenne NM. The endocannabinoid system links gut microbiota to adipogenesis. Mol Syst Biol. 2010;6:392.
  • Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020;53:101340.
  • Amoroso C, Perillo F, Strati F, Fantini MC, Caprioli F, Facciotti F. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation. Cells. 2020;9(5):1234.
  • Candelli M, Franza L, Pignataro G, Ojetti V, Covino M, Piccioni A. Interaction between lipopolysaccharide and gut microbiota in inflammatory bowel diseases. Int J Mol Sci. 2021;22(12):6242.
  • Xiao L, Liu Q, Luo M, Xiong L. Gut microbiota-derived metabolites in irritable bowel syndrome. Front Cell Infect Microbiol. 2021;11:729346.
  • Mars RAT, Yang Y, Ward T, Houtti M, Priya S, Lekatz HR, et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell. 2020;182(6):1460-73.e17.
  • Medina JM, Fernández López R, Crespo J, de la Cruz F. Propionate fermentative genes of the gut microbiome decrease in inflammatory bowel disease. J Clin Med. 2021;10(10):2176.
  • Kazemi A, Djafarian K. Gut microbiota and depression. En: Maritn CR, Hunter LA, Rajendram R, editors. The neuroscience of depression: genetics, cell biology, neurology, behavior, and diet. Elsevier; 2021. p. 463-72.
  • Simpson CA, Díaz Arteche C, Eliby D, Schwartz OS, Simmons JG, Cowan CSM. The gut microbiota in anxiety and depression - A systematic review. Clin Psychol Rev. 2021;83:101943.
  • Müller B, Rasmusson AJ, Just D, Jayarathna S, Moazzami A, Novicic ZK. Fecal short-chain fatty acid ratios as related to gastrointestinal and depressive symptoms in young adults. Psychosom Med. 2021;83(7):693-9.
  • Agus A, Clément K, Sokol H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut. 2021;70(6):1174-82.
  • Lin HV, Frassetto A, Kowalik EJ, Nawrocki AR, Lu MM, Kosinski JR. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012;7(4):e35240.
  • Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127(4):553-70.
  • Liu X, Chen Y, Zhang S, Dong L. Gut microbiota-mediated immunomodulation in tumor. J Exp Clin Cancer Res. 2021;40(1):221.
  • Bindels LB, Porporato P, Dewulf EM, Verrax J, Neyrinck AM, Martin JC. Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. Br J Cancer. 2012;107(8):1337-44.
  • Niccolai E, Baldi S, Ricci F, Russo E, Nannini G, Menicatti M. Evaluation and comparison of short chain fatty acids composi- tion in gut diseases. World J Gastroenterol. 2019;25(36):5543-58.
  • Khan AA, Sirsat AT, Singh H, Cash P. Microbiota and cancer: current understanding and mechanistic implications. Clin Transl Oncol. 2022;24(2):193-202.
  • Zhang H, Chen Y, Wang Z, Xie G, Liu M, Yuan B. Implications of gut microbiota in neurodegenerative diseases. Front Immunol. 2022;13:785644.
  • Hou YF, Shan C, Zhuang SY, Zhuang QQ, Ghosh A, Zhu KC. Gut microbiota-derived propionate mediates the neuroprotective effect of osteocalcin in a mouse model of Parkinson’s disease. Microbiome. 2021;9(1):34.
  • Fang Z, Li L, Zhang H, Zhao J, Lu W, Chen W. Gut microbiota, probiotics, and their interactions in prevention and treatment of atopic dermatitis: A review. Front Immunol. 2021;12:720393.
  • Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W. Skin and gut microbiome in psoriasis: Gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front Microbiol. 2020;11:589726.
  • Lee SY, Lee E, Park YM, Hong SJ. Microbiome in the gut-skin axis in atopic dermatitis. Allergy Asthma Immunol Res. 2018;10(4):354-62.
  • Wang LS, Mo YY, Huang YW, Echeveste CE, Wang HT, Chen J. Effects of dietary interventions on gut microbiota in humans and the possible impacts of foods on patients’ responses to cancer immunotherapy. eFood. 2020;1(4):279.
  • Myhrstad MCW, Tunsjø H, Charnock C, Telle Hansen VH. Dietary fiber, gut microbiota, and metabolic regulation-current status in human randomized trials. Nutrients. 2020;12(3):859.
  • De Almeida CV, De Camargo MR, Russo E, Amedei A. Role of diet and gut microbiota on colorectal cancer immunomodulation. World J Gastroenterol. 2019;25(2):151-62.
  • Qiu L, Gong F, Wu J, You D, Zhao Y, Xu L. Exercise interventions improved sleep quality through regulating intestinal microbiota composition. Int J Environ Res Public Health. 2022;19(19):12385.
  • Depoorter L, Vandenplas Y. Probiotics in pediatrics. A review and practical guide. Nutrients. 2021;13(7):2176.
  • Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S. Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel). 2019;11(1):38.
  • Mao K, Gao J, Wang X, Li X, Geng S, Zhang T. Bifidobacterium animalis subsp. lactis BB-12 has effect against obesity by re- gulating gut microbiota in two phases in human microbiota-associated rats. Front Nutr. 2022;8:811619.
  • Mitmesser S, Combs M. Prebiotics: Inulin and other oligosaccharides. En: Martin H. Floch MH, Ringel Y, Walker WA, editors. The microbiota in gastrointestinal pathophysiology: Implications for human health, prebiotics, probiotics, and dysbiosis. Elsevier; 2017. p. 201-8.
  • Àlvarez Mon MA, Ortega MA, García Montero C, Fraile Martínez O, Monserrat J, Lahera G. Exploring the role of nutraceuticals in major depressive disorder (MDD): Rationale, state of the art and future prospects. Pharmaceuticals (Basel). 2021;14(8):821. 68.
  • Zółkiewicz J, Marzec A, Ruszczy ́nski M, Feleszko W. Postbiotics-a step beyond pre- and probiotics. Nutrients. 2020;12(8):2189.
  • Vindigni SM, Surawicz CM. Fecal microbiota transplantation. Gastroenterol Clin North Am. 2017;46(1):171-85.
  • Choi HH, Cho YS. Fecal microbiota transplantation: Current applications, effectiveness, and future perspectives. Clin Endosc. 2016;49(3):257-65.
  • Park SY, Seo GS. Fecal microbiota transplantation: Is it safe? Clin Endosc. 2021;54(2):157.
  • Chinna Meyyappan A, Forth E, Wallace CJK, Milev R. Effect of fecal microbiota transplant on symptoms of psychiatric disorders: A systematic review. BMC Psychiatry. 2020;20(1):1-19.
  • Wang JW, Kuo CH, Kuo FC, Wang YK, Hsu WH, Yu FJ. Fecal microbiota transplantation: Review and update. J Formos Med Assoc. 2019;118Suppl1:S23-S31.
  • Elrakaiby M, Dutilh BE, Rizkallah MR, Boleij A, Cole JN, Aziz RK. Pharmacomicrobiomics: The impact of human microbiome va- riations on systems pharmacology and personalized therapeutics. OMICS. 2014;18(7):402-14.