Estimating aboveground biomass in native forest using remote sensing data combined with spectral radiometry

  1. Manrique, Silvina M.
  2. Núñez, Virgilio
  3. Franco, Judith
Revista:
Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

ISSN: 1578-5157

Año de publicación: 2012

Número: 12

Tipo: Artículo

Otras publicaciones en: Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

Resumen

The management of forests as carbon (C) reservoirs could be a valid strategy for mitigating global climate change. In Salta, Argentina, there is an urgent need for updated information on biomass stocks in order to assess the C sequestering and release made by native forests. We studied three ecosystems (Chaco, Yungas and shrubland) by combining different data: a) field-estimated above-ground biomass (AGB); b) field-spectral data, and c) spectral data from remote sensing. AGB was estimated through allometric equations. Radiometric measurements were synthesized into a set of spectral vegetation indices (VI). The satellite data was calibrated with those obtained through field radiometry, allowing us to find a predictive AGB model which indicates an AGB average of 85 ± 250 t.ha-1 for the center of the province of Salta. The model which was finally selected increases the level of estimate detail made at the national level and will allow the monitoring of such data

Referencias bibliográficas

  • Almeida, T.; Fonseca, E. e Fontana, D. (2007): “Avaliação da influência da largura e posicionamento das bandas espectrais sobre o valor do Índice de Vegetação por Diferença Normalizada (NDVI):” In Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil. INPE, Brasil, pp. 27-33.
  • Anaya, J.A.; Chuvieco, E. and Palacios-Orueta, A. (2009): “Aboveground biomass assessment in Colombia: A remote sensing approach”. Forest Ecology and Management, 257, pp. 1237–1246.
  • Arias, M. and Bianchi, A.R. (1996): Estadísticas climatológicas de la Provincia de Salta. INTA Eds, Buenos Aires, Argentina.
  • Baral, A. and Guha, G.S. (2004): “Trees for carbon sequestration or fossil fuel substitution: the issue of cost vs. carbon benefit”. Biomass and Bioenergy, 27, pp. 41–55.
  • Boletta, P.E.; Ravelo, A.C.; Planchuelo, A.M. and Grilli, M. (2006): “Assessing deforestation in the Argentine Chaco”. Forest Ecology and Management, 228, pp. 108–114.
  • Bonino, E.E. (2006): “Changes in carbon pools associated with land-use gradient in the dry Chaco, Argentina”. Forest Ecology and Mangement, 223, pp. 183-189.
  • Boschetti, M.; Bocchi, S. and Brivio, P.A. (2007): “Assessment of pasture production in the Italian Alps using spectrometric and remote sensing information”. Agriculture, Ecosystems and Environment, 118, pp. 267–272.
  • Boyd, R. and Ibarrarán, M.E. (2002): “Costs of compliance with the Kyoto Protocol: a developing country perspective”. Energy Economics, 24, pp. 21-39.
  • Brown, S. (1997): Estimating biomass and biomass change of tropical forests: a primer. FAO Forest Resources Assesment Publication Roma, Italia, 134, pp. 1–55.
  • Brown, S.; Gillespie, A.J. and Lugo, A.E. (1989): “Biomass estimation methods for tropical forests with applications to forest inventory data”. Forest Science, 35(4), pp. 381–902.
  • Cabrera, A.L. (1994): Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería. Ed. Acme Saci, Bs. As.
  • Chander, G. and Markham, B. (2003): “Revised Landsat-5 TM Radiometric Calibration Procedures and Postcalibration Dynamic Ranges”. IEEE Transactions on Geoscience and Remote Sensing, 41, pp. 2674–2678.
  • Chave, J.J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; et al. (2005): “Tree allometry and improved estimation of carbon stocks and balance in Tropical Forests”. Oecologia, 145, pp. 87-99.
  • Chávez, P.S. (1996): “Image-based atmospheric corrections—revised and revisited”. Photogrammetric Engineering and Remote Sensing, 62, pp. 1025–1036.
  • Chuvieco, E. (1996): Fundamentos de Teledetección. 3ª edición revisada, Ediciones RIALP, Madrid.
  • Clark, D.A. (2007): “Detecting tropical forests’ responses to global climatic and atmospheric change: current challenges and a way forward”. Biotropica, 39(1), pp. 4–19.
  • De Groot, R.S.; Wilson, M.A. and Boumans, R.M. (2002): “A typology for the classification, description and valuation of ecosystem functions, goods and services. Special Issue: The dynamics and value of ecosystem services: integrating economic and ecological perspectives”. Ecological Economics, 41, pp. 393–408.
  • Dixon, R.K.; Brown, S.; Houghton, R.A.; Solomon, A.M.; Trexier, M.C. and Wisniewski, J. (1994): “Carbon pools and flux of global forest ecosystems”. Science, 263 (14), pp. 185–190.
  • Ducati, J.R.; Semmelmann, F.R.; Guasselli, L.A.; Deppe, F.; Martins, R.L.; Kreling, M.T. and Cauduro, G. (2000): “Clasificação e quantificação de areas de florestas no nordeste do Estado do Rio Grande do Sul, Brasil”. IX Simpósio Latinoamericano de Percepción Remota, Puerto Iguazú; Misiones, Argentina.
  • Elvidge, C.D. and Chen, Z. (1995): “Comparison of Broad-Band and Narrow-Band Red and Near-Infrared Vegetation Indices”. Remote Sensing of Environment, 54, pp. 38–48.
  • Fang, S.; Xue, J. and Tang, L. (2007): Biomass production and carbon sequestration potential in Poplar plantations with different management patterns. Journal of Environmental Management, 85, pp. 672–679.
  • Fernández, N.; Paruelo, J.M. and Delibes, M. (2010): “Ecosystem functioning of protected and altered Mediterranean environments: A remote sensing classification in Doñana, Spain”. Remote Sensing of Environment, 114, pp. 211–220.
  • Fonseca, E. (2005): “Desenvolvimento de modelo da disponibilidade de fitomassa aérea para formações campestres naturais a partir de dados espectrais orbitais e agrometeorológicos.” Tese de Doutorado do Curso de Pós-Graduação em Sensoriamento Remoto. INPE-12969-TDI/1017. São José dos Campos, Brasil.
  • Foody, G.M.; Boyd, D.S. and Cutler, M.E. (2003): “Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions”. Remote Sensing of Environment, 85, pp. 463–474.
  • Gilabert, M.A.; González Piqueras, J. y García Haro, J. (1997): “Acerca de los Índices de Vegetación”. Revista de Teledetección, 8, pp. 1–10.
  • Grant, J.P.; Wigneron, J.P.; Van de Griend, A.; Kruszewski, A.; Søbjærg, S., and Skou, N. (2007): “A field experiment on microwave forest radiometry: L-band signal behaviour for varying conditions of surface wetness”. Remote Sensing of Environment, 109, pp. 10–19.
  • Haygarth, P.M. and Ritz, K. (2009): “The future of soils and land use in the UK: Soil systems for the provision of land-based ecosystem services”. Land Use Policy, 26, pp. 187–197.
  • Holmlund, C.M. and Hammer, M. (1999): “Ecosystem services generated by fish populations”. Ecological Economics, 29, pp. 253–268.
  • Huete, A.R. (1988): “A soil adjusted vegetation index”. Remote Sensing of Environment, 25, pp. 295-309.
  • Instituto Nacional de Tecnología Industrial y Centro de Investigación Tecnológico de la Madera-INTI/CITEMA (2008): Listado de densidades secas de maderas. Buenos Aires, Argentina. http://www.Inti.Gov.Ar/Citema/Densidad_Cientifico.Pdf [accessed 25.08.11].
  • Intergovernmental Panel on Climate Change-IPCC (2000): Land use, land use change, and forestry. Cambridge University Press, Cambridge, United Kingdom.
  • Intergovernmental Panel on Climate Change-IPCC: (1996): Tecnologías, políticas y medidas para mitigar el cambio climático. Documento técnico I. Watson, R.T., Zinyowera, M.C., Moss, R.H. Eds. IPCC.
  • Intergovernmental Panel on Climate Change-IPCC (2007): “The physical science basis”. In: Climate Change 2007. Contribution of Working Group I to the Fourth Assessment. Solomon, S., Qin, M., Manning, Z., Chen, M., Marquis, K.B., Averyt, M., Miller, H. Eds. Cambridge University Press, Cambridge, United Kingdom.
  • Jia, S. and Akiyama, T. (2005): “A precise, unified method for estimating carbon storage in cool-temperate deciduous forest ecosystems”. Agricultural and Forest Meteorology, 134, pp. 70–80.
  • Jong, B.H.; Masera, O.; Olguín, M. and Martínez, R. (2007): “Greenhouse gas mitigation potential of combining forest management and bioenergy substitution: A case study from Central Highlands of Michoacán, Mexico”. Forest Ecology and Management, 242, pp. 398–411.
  • Jordan, C.F. (1969): “Derivation of leaf-area index from quality of light on the forest floor”. Ecology, 50 (4), 663–666.
  • Julien, Y. and Sobrino, J. (2009): “The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters”. Remote Sensing of Environment, 113, pp. 329–334.
  • Keith, H.; Mackey, B.G. and Lindenmayer, D.B. (2009): “Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests”. PNAS, 106 (28), pp. 11635–11640.
  • Kirschbaum, M.U. (2003): “To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels”. Biomass and Bioenergy, 24, pp. 297–310.
  • Kumar, M.; Kumar, P. (2008): “Valuation of the ecosystem services: A psycho-cultural perspective”. Ecological Economics, 64, pp. 808–819.
  • Lara, A.; Little, C.; Urrutia, R.; McPhee, J.; Alvarez-Garretón, C.; Oyarzún, C.; et al. (2009): “Assessment of ecosystem services as an opportunity for the conservation and management of native forests in Chile”. Forest Ecology and Management, 258(4), pp. 415–24.
  • Lu, D.; Mausel, P.; Brondizio, E. and Moran, E. (2004): “Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin”. Forest Ecology and Management, 198, pp. 149–167.
  • Manrique, S.M.; Franco, J.; Núñez, V. and Seghezzo, L. (2011): “Potential of native forests for the mitigation of greenhouse gases in Salta, Argentina”. Biomass and Bioenergy, 35, pp. 2184-2193.
  • Martínez-Yrízar, A.; Sarukhan, J.; Pérez-Jiménez, J.; Rincón, E.; Maass, J.M.; Solís-Magallanes, A.; et al. (1992): “Above-ground phytomass of a tropical deciduous forest on the coast of Jalisco, México”. Journal of Tropical Ecology, 8, pp. 87–96.
  • Martyn, D. (1992): Climates of the World. Elsevier Publishing Company, Amsterdam.
  • Masera, O.R.; Ordoñez, M.J. and Dirzo, R. (1997): “Carbon emissions from Mexican forests: current situation and long-term scenarios”. Climatic Change, 35, pp. 265–295.
  • McKeown, A. and Gardner, G. (2009): Climate Change Reference Guide. Worldwatch Institute. 17 p.
  • Medeiros, J.S. (1987): “Desenvolvimento metodológico para a detecção de alterações da cobertura vegetal através da análise digital de dados Mss Landsat”. Dissertação de mestrado em sensoriamento remoto. INPE-4123-Tdl/262. São José Dos Campos, Brasil.
  • Millennium Ecosystem Assessment-MEA (2005): Ecosystems and human well-being: current state and trends. Findings of the Condition and Trends Working Group. Rashid, H., Scholes, R., Ash, N., Eds. Island Press, Washington DC.
  • Milton, E.J.; Schaepman, M.E.; Anderson, K.; Kneubühler, M.and Fox, N. (2009): “Progress in field spectroscopy”. Remote Sensing of Environment, 113, pp. 92–109.
  • Montenegro, C.; Bono, J.; Parmuchi, M.G. y Estrada, M. (2005): “La Deforestación y Degradación de los Bosques Nativos en Argentina”. Unidad de Manejo del Sistema de Evaluación Forestal, Dirección de Bosques, Secretaría de Ambiente y Desarrollo Sustentable. Revista IDIA XXI.
  • Núñez, V.; Moreno, R.; Menéndez, M.; Núñez, A.; Yazzle, L. y Aguero, A. (2007): “Ordenación territorial del Valle de Lerma. Parte II: Pautas para la planificación”. Proyecto 1345. Consejo de Investigación de la Universidad Nacional de Salta, Salta, Argentina.
  • Ordóñez, J.A.; Jong, B.H.; García-Oliva, F.; Aviña, F.L.; Pérez, J.V.; Guerrero, G.; Martínez, R. and Masera, O. (2008): “Carbon content in vegetation, litter, and soil under 10 different land-use and land-cover classes in the Central Highlands of Michoacán, Mexico”. Forest Ecology and Management, 255, pp. 2074–2084.
  • Paruelo, J.M.; Golluscio, R.A.; Guerschman, J.P.; Cesa, A.; Jouve, V.V. and Garbulsky, M.F. (2004): “Regional scale relationships between ecosystem structure and functioning. The case of the Patagonian steppes”. Global Ecology and Biogeography, 13, pp. 385–395.
  • Paruelo, J.M.; Oesterheld, M.; Di Bella, C.M.; Arzadum, M.; Lafontaine, J.; Cahuepe, M. and Rebella, C.M. (2000): “Estimation of primary production of subhumid rangelands from remote sensing data”. Applied Vegetation Science, 3, pp. 189–195.
  • Paruelo, J.M.; Verón, S.R.; Volante, J.; Seghezzo, L.; Vallejos, M.; Aguiar, S.; Amdan, L.; Baldassini, P.; Ciuffolif, L.; Huykman, N.; Davanzo, B.; González, E.; Landesmann, J. y Picardi, D. (2011): “Elementos conceptuales y metodológicos para la Evaluación de Impactos Ambientales Acumulativos (EIAAc) en bosques subtropicales. El caso del este de Salta, Argentina”. Ecología Austral, 21, pp. 163–178.
  • Patenaude, G.; Milne, R. y Dawson, T.P. (2005): “Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol”. Environmental Science and Policy, 8, pp. 161–178.
  • Peddle, D.R.; White, H.P.; Soffer, R.J.; Miller, J.R. and LeDrew, E.F. (2001): “Reflectance processing of remote sensing spectroradiometer data”. Computers and Geosciences, 27, pp. 203-213.
  • Pérez Priego, O. (2004): “Detección de estrés hídrico en olivar mediante fluorescencia clorofílica, Métodos de espectroscopía y teledetección térmica”. Tesis Profesional. Escuela Técnica Superior de Ingenieros Agrónomos y de Montes. Universidad de Córdoba, España.
  • Piñeiro, G.; Oesterheld, M. and Paruelo, J.M. (2006): “Seasonal variation in aboveground production and radiation-use efficiency of temperate rangelands estimated through remote sensing”. Ecosystems, 9, pp. 357–373.
  • Pinilla, C. (1995): Elementos de teledetección. RA-MA Editorial, Madrid, España.
  • Roy, P.S. and Ravan, S.A. (1996): “Biomass estimation using satellite remote sensing data. An investigation on possible approaches for natural forest”. Bioscience, 21(4), pp. 535-561.
  • Schino, G.; Borfecchia, F.; De Cecco, L.; Dibari, C.; Iannetta, M.; Martini, S. and Pedrotti, F. (2003): “Satellite estimate of grass biomass in a mountainous range in central Italy”. Agroforestry Systems, 59, pp. 157–162.
  • Secretaría de Ambiente y Desarrollo Sustentable-SAyDS (2005): “Primer Inventario Nacional de Bosques Nativos. Proyecto Bosques Nativos y Áreas Protegidas”. Préstamo BIRF 4085-AR. Informe Nacional, SAyDS.
  • Sellers, P.J.; Berry, J.A.; Collatz, G.J.; Field, C.B. and Hall, F.G. (1992): “Canopy reflectance, photosynthesis and transpiration. A reanalysis using improved leaf models and a new canopy integration scheme”. Remote Sensing of Environment, 42, pp. 187–216.
  • Sierra, C.A.; del Valle, J.I.; Orrego, S.A.; Moreno, F.H.; Harmon, M.E.; Zapata, M.; Colorado, G.J.; Herrera, M.A.; Lara, W.; Restrepo, D.E.; Berrouet, L.M.; Loaiza, L.M. and Benjumea, J.F. (2007): “Total carbon stocks in a tropical forest landscape of the Porce region, Colombia”. Forest Ecology and Management, 243, pp. 299–309.
  • Soenen, S.A.; Peddle, D.R.; Hall, R.J.; Coburn, C.A. and Hall, F.G. (2010): “Estimating aboveground forest biomass from canopy reflectance model inversion in mountainous terrain”. Remote Sensing of Environment, 114, pp. 1325–1337.
  • Stroppiana, D.; Boschetti, M.; Brivio, P.A. and Bocchi, S. (2009): “Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry”. Field Crops Research, 111, pp. 119–129.
  • Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S. and Van Der Meer, B. (2004): “Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications”. Remote Sensing of Environment, 91, pp. 354-376.
  • Thornley, J.H. and Cannell, M.G. (2000): “Managing forests for wood yield and carbon storage: a theoretical study”. Tree Physiology, 20, pp. 477–484.
  • Trishchenko, A.P. (2009): “Effects of spectral response function on surface reflectance and NDVI measured with moderate resolution satellite sensors: extension to AVHRR NOAA-17, 18 and METOP-A”. Remote Sensing of Environment, 113, pp. 335–341.
  • Tucker, C. J.; Townshend, J. R. and Goff, T. E. (1985): “African land-cover classification using satellite data”. Science, 227, pp. 369−375.
  • Unidad de Manejo del Sistema de Evaluación Forestal-UMSEF (2005): “Informe sobre deforestación en Argentina”. Dirección de Bosques Secretaría de Ambiente y Desarrollo Sustentable. http://www2.Medioambiente.Gov.Ar/Documentos/Bosques/Umsef/Cartografia/Deforestacion_Argentina.Pdf . [accessed 23.10.11].
  • Unidad de Manejo del Sistema de Evaluación Forestal-UMSEF (2007): “Informe sobre deforestación en Argentina. Secretaría de Ambiente y Desarrollo Sustentable”. Buenos Aires. http://www.ambiente.gov.ar/archivos/web/UMSEF/File/deforestacin_argentina_v2.pdf. [accessed 13.06.11].
  • Valeriano, M.M. (2003): “Reflectancia espectral de culturas agrícolas anuais (I):espectrorradiometría”. Espaco y Geografía, 6 (1), pp. 1–27.
  • Viglizzo, E.F.; Roberto, Z.E.; Lértora, F.; López Gay, E. and Bernardos, J. (2007): “Climate and land-use change in field-crop ecosystems of Argentina”. Agriculture, Ecosystems and Environment, 66, pp. 61-70.
  • Yang, Z.; Rao, M.N.; Elliott, N.C.; Kindler, S.D. and Popham, T.W. (2005): “Using ground-based multispectral radiometry to detect stress in wheat caused by greenbug (Homoptera: Aphididae) infestation”. Computers and Electronics in Agriculture, 47, pp. 121-135.
  • Zha, Y.; Gao, J.; Ni, S.; Liu, S.; Jiang, J. and Wei, Y. (2003): “A spectral reflectance-based approach to quantification of grassland covers from Landsat TM imagery”. Remote Sensing of Environment., 87, pp. 371-375.
  • Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Le Moine, J. and Ryu, S.R. (2004): “Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA”. Remote Sensing of Environment, 93, pp. 402-411.