Rational reparametrization of odes with radical coefficients

  1. J. RAFAEL SENDRA
  2. DAVID SEVILLA
  3. CARLOS VILLARINO
Journal:
Monografías de la Real Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza

ISSN: 1132-6360

Year of publication: 2018

Issue Title: Proceedings of the XVI EACA Zaragoza Encuentros de Algebra Computacional y Aplicaciones

Issue: 43

Pages: 135-138

Type: Article

More publications in: Monografías de la Real Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza

Abstract

Given an ordinary differential equation F(x, y(x), y0 (x), . . . , yn) (x)) = 0, polynomial in y, y0 , . . . , yn) and whose coefficients are complex radical expressions in x, we analyze whether there exists a rational change of variable x = r(z) such that the new differential equation G(z, Y (z), . . . , Y n) (z)) = 0 where Y (z) = y(r(z)) is algebraic (i.e. its coefficients are rational in z). We describe an algorithm for this purpose, which provides also the inverse transformation, so that the solutions of both ODEs are related. In the particular case y 0 (x) = δ(x) with δ(x) an algebraic radical expression in x, the algorithm outputs a change of variable into a rational integrand.