Análisis de selección de materiales de cambio de fase (PCM) para almacenamiento de calor latente por métodos de decisión de multi-criterio (MCDM)

  1. Javier Martínez-Gómez 1
  2. Ricardo A. Narváez C. 2
  3. Gonzalo Guerrón 3
  1. 1 Universidad internacional SEK, Quito, Ecuador
  2. 2 Universidad Central del Ecuador (UCE-GIIP), Quito, Ecuador
  3. 3 Universidad UTE, Quito, Ecuador
Journal:
RISTI: Revista Ibérica de Sistemas e Tecnologias de Informação

ISSN: 1646-9895

Year of publication: 2020

Issue: 32

Pages: 176-189

Type: Article

More publications in: RISTI: Revista Ibérica de Sistemas e Tecnologias de Informação

Abstract

Use of thermal energy storage (TES) with high-temperature phase change materials (PCMs) for the above-mentioned applications will allow raising considerably energy efficiency in using the thermal and solar energy and solve the disparity between energy production or availability and consumption. This research aims to select a PCM which better accomplish the solution of the TES between 200– 400 °C and reduce the cost of production. Multi-criteria decision-making methods (MCDM) have been implemented to solve the problem. It has been considered characteristic properties and qualitative criteria of the materials to assign importance to each alternative in order to select the best alternative. The results illustrated the best and second-best choice for the three MCDM were NaOH and KNO3, because they had the highest values of the most important criteria for a PCM. Furthermore, it had values of Spearman’s rank correlation between the methods exceeds of 0,714

Bibliographic References

  • Acurio, K., Chico-Proano, A., Martínez-Gómez, J., Ávila, C. F., Ávila, Á., & Orozco, M. (2018). Thermal performance enhancement of organic phase change materials using spent diatomite from the palm oil bleaching process as support. Construction and Building Materials, 192, 633-642.
  • Acurio, K., Chico-Proano, A., Martínez-Gómez, J., & Orozco, M. (2019). Regeneration of waste diatomite from palm oil production process as a support material for pcms in thermal energy storage in buildings. In Advanced Materials Research Trans Tech Publications, 1151, 29-33.
  • Aldás, P. S. D., Constante, J., Tapia, G. C., & Martínez-Gómez, J. (2019). Monohull ship hydrodynamic simulation using CFD. International Journal of Mathematics in Operational Research, 15(4), 417-433.
  • Beltrán, R. D. & Martínez-Gómez, J. (2019). Analysis of phase change materials (PCM) for building wallboards based on the effect of environment. Journal of Building Engineering, 24, 100726.
  • Chingo, C., & Martínez-Gomez, J. (2020). Material selection using multi-criteria decision making methods for geomembranes. International Journal of Mathematics in Operational Research, 16(1), 24-52.
  • Espinoza, V. S., Guayanlema, V., & Martínez-Gómez, J. (2018). Energy Efficiency Plan Benefits in Ecuador: Long-range Energy Alternative Planning Model. International Journal of Energy Economics and Policy, 8(4), 52-54.
  • Fernández, A. I., Martínez, M., Segarra, M., Martorell, I., & Cabeza, L. F. (2010). Selection of materials with potential in sensible thermal energy storage. Solar energy materials and solar cells, 94(10), 1723-1729.
  • Gaona, D., Urresta, E., Marínez, J., & Guerrón, G. (2017). Medium-temperature phasechange materials thermal characterization by the T-History method and differential scanning calorimetry. Experimental Heat Transfer, 30(5), 463- 474.
  • Godoy-Vaca, L., Almaguer, M., Martínez, J., Lobato, A., & Palme, M. (2017). Analysis of solar chimneys in different climate zones - case of social housing in ecuador. Paper presented at the IOP Conference Series: Materials Science and Engineering, 245(7) doi:10.1088/1757-899X/245/7/072045 Retrieved from www.scopus.com
  • Kastillo, J. P., Martínez-Gómez, J., Villacis, S. P., & Riofrio, A. J. (2017). Thermal Natural Convection Analysis of Olive Oil in Different Cookware Materials for Induction Stoves. International Journal of Food Engineering, 13(3).
  • Khare, S., Dell’Amico, M., Knight, C., & McGarry, S. (2013). Selection of materials for high temperature sensible energy storage. Solar Energy Materials and Solar Cells, 115, 114-122.
  • Martínez-Gómez, J., Guerrón, G., & Riofrio, A. J. (2017). Analysis of the “Plan Fronteras” for clean cooking in Ecuador. International Journal of Energy Economics and Policy, 7(1), 135-145.
  • Martínez-Gómez, J. (2018). Material selection for multi-tubular fixed bed reactor Fischer-Tropsch reactor. International Journal of Mathematics in Operational Research, 13(1), 1-29.
  • Muñoz, A., Martínez, J., Monge, M. A., Savoini, B., Pareja, R., & Radulescu, A. (2012). SANS evidence for the dispersion of nanoparticles in W–1Y2O3 and W–1La2O3 processed by hot isostatic pressing. International Journal of Refractory Metals and Hard Materials, 33, 6-9.
  • Villacís, S., Martínez, J., Riofrío, A. J., Carrión, D. F., Orozco, M. A., & Vaca, D. (2015). Energy efficiency analysis of different materials for cookware commonly used in induction cookers. Energy Procedia, 75, 925-930.
  • Villacreses, G., Gaona, G., Martínez-Gómez, J., & Jijón, D. J. (2017). Wind farms suitability location using geographical information system (GIS), based on multicriteria decision making (MCDM) methods: The case of continental Ecuador. Renewable Energy, 109, 275-286.
  • Villacreses, G., Martínez-Gómez, J., & Quintana, P. (2019). Geolocation of electric bikes recharging stations: City of Quito study case. International Journal of Mathematics in Operational Research, 14(4), 495-516.
  • Villacreses, G., Salinas, S. S., Ortiz, W. D., Villacís, S., & Martínez-Gómez, J. (2017). Environmental Impact Assessment of Internal Combustion and Electric Engines for Maritime Transport. Environmental Processes, 4(4), 907-922.