Acoustic localization of people in reverberant environments using deep learning techniques

  1. VERA DÍAZ, JUAN MANUEL
Dirigida per:
  1. Daniel Pizarro Pérez Director
  2. Javier Macías Guarasa Codirector

Universitat de defensa: Universidad de Alcalá

Fecha de defensa: 03 de de novembre de 2023

Tribunal:
  1. Manuel Rosa Zurera President
  2. Juana María Gutiérrez Arriola Secretari/ària
  3. Máximo Cobos Serrano Vocal

Tipus: Tesi

Teseo: 827240 DIALNET lock_openTESEO editor

Resum

La localización de las personas a partir de información acústica es cada vez más importante en aplicaciones del mundo real como la seguridad, la vigilancia y la interacción entre personas y robots. En muchos casos, es necesario localizar con precisión personas u objetos en función del sonido que generan, especialmente en entornos ruidosos y reverberantes en los que los métodos de localización tradicionales pueden fallar, o en escenarios en los que los métodos basados en análisis de vídeo no son factibles por no disponer de ese tipo de sensores o por la existencia de oclusiones relevantes. Por ejemplo, en seguridad y vigilancia, la capacidad de localizar con precisión una fuente de sonido puede ayudar a identificar posibles amenazas o intrusos. En entornos sanitarios, la localización acústica puede utilizarse para controlar los movimientos y actividades de los pacientes, especialmente los que tienen problemas de movilidad. En la interacción entre personas y robots, los robots equipados con capacidades de localización acústica pueden percibir y responder mejor a su entorno, lo que permite interacciones más naturales e intuitivas con los humanos. Por lo tanto, el desarrollo de sistemas de localización acústica precisos y robustos utilizando técnicas avanzadas como el aprendizaje profundo es de gran importancia práctica. Es por esto que en esta tesis doctoral se aborda dicho problema en tres líneas de investigación fundamentales: (i) El diseño de un sistema extremo a extremo (end-to-end) basado en redes neuronales capaz de mejorar las tasas de localización de sistemas ya existentes en el estado del arte. (ii) El diseño de un sistema capaz de localizar a uno o varios hablantes simultáneos en entornos con características y con geometrías de arrays de sensores diferentes sin necesidad de re-entrenar. (iii) El diseño de sistemas capaces de refinar los mapas de potencia acústica necesarios para localizar a las fuentes acústicas para conseguir una mejor localización posterior. A la hora de evaluar la consecución de dichos objetivos se han utilizado diversas bases de datos realistas con características diferentes, donde las personas involucradas en las escenas pueden actuar sin ningún tipo de restricción. Todos los sistemas propuestos han sido evaluados bajo las mismas condiciones consiguiendo superar en términos de error de localización a los sistemas actuales del estado del arte.