Radiofrecuencia en la cicatrización de heridas crónicas. Una revisión en hospital de media estancia

  1. Miguel Ángel Barbas Monjo 1
  2. Jara Velasco García Cuevas 2
  3. Jesús Rodríguez Lastra 3
  4. Juan Nicolás Cuenca Zaldívar 4
  1. 1 Doctorando. Hospital Guadarrama. Madrid
  2. 2 Hospital Guadarrama. Madrid
  3. 3 Universidad de Carabobo, Valencia, Venezuela. Universidad Autónoma de Madrid, Madrid
  4. 4 Universidad Francisco de Vitoria, Madrid
Revista:
Gerokomos: Revista de la Sociedad Española de Enfermería Geriátrica y Gerontológica

ISSN: 1134-928X

Any de publicació: 2021

Volum: 32

Número: 1

Pàgines: 63-67

Tipus: Article

DOI: 10.4321/S1134-928X2021000100013 DIALNET GOOGLE SCHOLAR lock_openAccés obert editor

Altres publicacions en: Gerokomos: Revista de la Sociedad Española de Enfermería Geriátrica y Gerontológica

Objectius de Desenvolupament Sostenible

Resum

ABSTRACT Chronic wounds are a significant health problem. Electrical stimulation seems to produce a significantly greater reduction in surface area and more complete healing of difficult-to-heal and poorly healing ulcers compared to standard therapy without compressive bandaging. Objectives: To evaluate the effect that radiofrequency at low intensity and with non-thermal effects has on the different components of the mechanism of the healing process. Methodology: A tecartherapy device (CAPENERGY C200) was used for the treatment. A total of 10 radiofrequency sessions were applied once a week with a power of 60% and a frequency of 1.2 MHz for 30 minutes. Results: The presence of oedema, observed in all patients in the lower extremity region, disappeared in 30 of the 36 patients (Wilcoxon p = 0.004). This result was confirmed by ultrasound. The mean subcutaneous cellular oedema decreased by 1.73 cm (Friedman p = 0.000). The temperature of the area taken before and after treatment increased by an average of °C. These differences are statistically significant (Wilcoxon p = 0.000). Conclusions: Radiofrequency appears to be able to reduce the long healing process of torpidly evolving lesions, and we found significant differences throughout the treatment and a progressive reduction in lesion measurements and faster healing of complex wounds.

Referències bibliogràfiques

  • Zenevicz, IL,Moriguchi, Y,Madureira, VSF. (2013). A religiosidade no processo de viver envelhecendo. Rev esc enferm USP. 47. 433
  • Lazarus, G,Valle, MF,Malas, M,Qazi, U,Maruthur, NM,Doggett, D. (2014). Chronic venous leg ulcer treatment: future research needs. Wound Rep Reg. 22. 34-42
  • Fiebig, A,Krusche, P,Wolf, A,Krawczak, M,Timm, B,Nikolaus, S. (2010). Heritability of chronic venous disease. Hum Genet. 127. 669
  • Formentini, M,Fernandes, LP. (2014). Factors that influence healing of chronic venous leg ulcers: a retrospective cohort. An Bras Dermatol. 89. 414
  • Glanz, M,Klawansky, S,Chalmers, T. (1997). Biofeedback therapy in stroke: a review. J R Soc Med. 90. 33
  • Pelham, F,Keith, M,Smith, A,Williams, DV,Powell, G. (2007). Pressure ulcer prevalence and cost in the U.S. Population. J Am Med Dir Assoc. 8.
  • Hirshberg, J,Rees, RS,Marchant, B,Dean, S. (2000). Osteomyelitis related to pressure ulcers: the cost of neglect. Adv Skin Wound Care. 13. 25
  • Allman, RM. (1989). Epidemiology of pressure sores in different populations. Decubitus. 2. 30
  • George, FR,Lukas, RJ,Moffett, J,Ritz, MC. (2002). In-vitro mechanisms of cell proliferation induction: a novel bioactive treatment for accelerating wound healing. Wounds. 14. 107
  • Mustoe, TA,Cooter, RD,Gold, MH. (2002). International clinical recommendations on scar management. Plast Reconstr Surg. 110. 560
  • Levenson, SM,Geever, EF,Crowley, LV,Oates 3rd, JF,Berard, CW,Rosen, H. (1965). The healing of rat skin wounds. Ann Surg. 161. 293-308
  • Roten, SV,Bhat, S,Bhawan, J. (1996). Elastic fibers in scar tissue. J Cutan Pathol. 23. 37-42
  • Waldorf, H,Fewkes, J. (1995). Wound healing. Adv Dermatol. 10. 77-96
  • Werner, S,Grose, R. (2003). Regulation of wound healing by growth factors and cytokines. Physiol Rev. 83. 835
  • Mani, R,Falanga, V,Shearman, CP,Sandaman, D. (1999). Chronic wound healing. Clinical measurement and basic science. WB Saunders. New York.
  • Bollinger, A,Leu, AJ,Hofmann, U,Franzeck, UK. (1997). Microvascular changes in venous disease: an update. Angiology. 48. 27-32
  • Browse, NL,Burnard, KG. (1982). The cause of venous ulceration. Lancet. 2. 243
  • Cheatle, TR,Sarin, S,Coleridge Smith, PD,Scurr, JH. (1991). The pathogenesis of skin damage in venous disease: a review. Eur J Vasc Surg. 5. 115
  • Coleridge Smith, PD,Thomas, P,Scurr, JH,Dormandy, JA. (1988). Causes of venous ulceration: a new hypothesis. Br Med J. 296. 1726
  • Coleridge Smith, PD. (1996). The microcirculation in venous hypertension. Cardiovasc Res. 32. 789
  • Falanga, V,Eaglstein, WH. (1993). The trap hypothesis of venous ulceration. Lancet. 341. 1006
  • (1991). Second European Consensus Document on Chronic Critical Leg Ischemia. Circulation. 84. 1-25
  • González de la Torre, H,Mosquera Fernández, A,Quintana Lorenzo, ML,Perdomo Pérez, E,Quintana Montesdeoca, MP. (2012). Clasificaciones de lesiones en pie diabético: Un problema no resuelto. Gerokomos. 23. 75-87
  • Ieran, M,Zaffuto, M,Bagnacani, M,Annovi, M,Moratti, A,Cadossi, R. (1990). Effect of low frequency pulsing electromagnetic fields on skin ulcers of venous origin in humans: a double-blind study. J Orthopedic Res. 8. 276
  • Stiller, MJ,Pak, GH,Shupack, JL,Taller, S,Kenny, C,Lorrie, J. (1992). A portable pulsed electromagnetic field (PEMF) device to enhance healing of recalcitrant venous ulcers: a double blind, placebocontrolled clinical trial. Br J Dermatol. 127. 147
  • Lawrence, WT. (1998). Physiology of the acute wound. Clin Plast Surg. 25. 321
  • Levin, M. (2009). Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Semin Cell Dev Biol. 20. 543
  • Nuccitelli, R. (2003). A role for endogenous electric fields in wound healing. Curr Top Dev Biol. 58. 1-26
  • Maklebust, J,Rodeheaver, G,Bartolucci, A,Franz, RA,Sussman, C,Ferrell, BA. (1997). Pressure Ulcer Scale for Healing: Derivation and Validation of the PUSH Tool. Adv Wound Care. 10. 96-101
  • Chapman, CR,Casey, KL,Dubner, R,Foley, KM,Gracely, RH,Reading, AE. (1985). Pain measurement: an overview. Pain. 22. 1-31
  • Ho, K,Spence, J,Murphy, MF. (1996). Review of pain-measurement tools. Ann Emerg Med. 27. 427
  • Meehan, DA,McRae, ME,Rourke, DA,Eisenring, C,Imperial, FA. (1995). Analgesic administration, pain intensity, and patient satisfaction in cardiac surgical patients. Am J Crit Care. 4. 435
  • Terai, T,Yukioka, H,Asada, A. (1998). Pain evaluation in the intensive care unit: observer-reported faces scale compared with self-reported visual analog scale. Reg Anesth Pain Med. 23. 147
  • Reips, U,Funke, F. (2008). Interval level measurement with visual analogue scales in Internet-based research: VAS Generator. Behav Res Methods. 40. 699-704
  • Cañedo-Dorantes, L,García-Cantú, R,Barrera, R,Méndez-Ramírez, I,Navarro, VH,Serrano, G. (2002). Healing of chronic arterial and venous leg ulcers through systemic effects of electromagnetic fields [corrected]. Arch Med Res. 33. 281
  • Matos, MA,Cicerone, MT. (2010). Alternating current electric field effects on neural stem cell viability and differentiation. Biotechnol Prog. 26. 664
  • Pesce, M,Patruno, A,Speranza, L,Reale, M. (2013). Extremely low frequency electromagnetic field and wound healing: implication of cytokines as biological mediators. Eur Cytokine Netw. 24. 1-10
  • Costin, GE,Birlea, SA,Norris, DA. (2012). Trends in wound repair: cellular and molecular basis of regenerative therapy using electro-magnetic fields. Curr Mol Med. 12. 14-26
  • Pilla, AA. (2013). Non-thermal electromagnetic fields: from first messenger to therapeutic applications. Electromagn Biol Med. 32. 123
  • Sheikh, AQ,Taghian, T,Hemingway, B,Cho, H,Kogan, AB,Narmoneva, DA. (2013). Regulation of endothelial MAPK/ERK signaling and capillary morphogenesis by low-amplitude electric field. J R Soc Interface. 10.
  • Sunkari, VG,Aranovitch, B,Portwood, N,Nikoshkov, A. (2011). Effects of a low-intensity electromagnetic field on fibroblast migration and proliferation. Electromagn Biol Med. 30. 80