Nestling sex and behaviour determine the host preference of insect vectors in avian nests

  1. García‐del Río, Marina 4
  2. Castaño‐Vázquez, Francisco 7
  3. Martínez, Javier 1
  4. Martínez‐de la Puente, Josué 56
  5. Cantarero, Alejandro 3
  6. García‐Velasco, Javier 4
  7. Merino, Yago 2
  8. Merino, Santiago 4
  1. 1 Department of Biomedicine and Biotechnology (Parasitology), Pharmacy School Alcalá de Henares University Madrid Spain
  2. 2 Missouri Valley College Marshall Missouri USA
  3. 3 Department of Physiology, Veterinary School Complutense University of Madrid Madrid Spain
  4. 4 Department of Evolutionary Ecology National Museum of Natural Sciences, Spanish National Research Council (CSIC) Madrid Spain
  5. 5 Department of Conservation Biology and Global Change Doñana Biological Station, Spanish National Research Council (CSIC) Sevilla Spain
  6. 6 CIBER of Epidemiology and Public Health Madrid Spain
  7. 7 Department of Biodiversity, Ecology and Evolution Complutense University of Madrid Madrid Spain
Revue:
Molecular Ecology

ISSN: 0962-1083 1365-294X

Année de publication: 2024

Volumen: e17517

Type: Article

DOI: 10.1111/MEC.17517 GOOGLE SCHOLAR lock_openAccès ouvert editor

D'autres publications dans: Molecular Ecology

Résumé

Sexual differences in pathogen prevalence in wildlife often arise from varying susceptibility influenced by factors such as sex hormones and exposure to pathogens. In the case of vector-borne pathogens, host selection by insect vectors determines the exposure of hosts to infections, largely affecting the transmission of these infectious diseases. We identify the blood-feeding patterns of insect vectors in Blue Tit (Cyanistes caeruleus) nestlings in a 3-year study. Blood from both nestlings and insect vectors (Culicoides spp. and Simuliidae) captured inside nest-boxes were used to molecularly determine the sex of the host. We then compared the sex-ratios of the nestlings that had been bitten and those of the complete brood in each nest. We found that males were bitten more frequently than females in 2021, when males weighed less in comparison to other years. Additionally, we molecularly identified bitten nestlings individually by genotyping the DNA of blood obtained from both, the vector's abdomen and nestlings of each brood in 2022. Nestlings more frequently bitten by vectors were males, weighed less and were closest to the nest entrance. To our knowledge this is the first study identifying the nestling selection by insect vectors in bird nests under natural conditions. These results contribute to understanding the mechanisms of host selection by insect vectors, shedding light on pathogen transmission and offering insights into the observed sex-biased infections in wildlife populations.

Information sur le financement

Financeurs

  • Ministerio de Ciencia, inn Spain
    • PGC2018-097426-B-C21
  • European Regional Development Fund European Union
    • MICIU/AEI/10.13039/501100011033/ERDF

Références bibliographiques

  • 10.1007/BF00290777
  • 10.1046/j.1365-294X.1997.00150.x
  • Bukacijski D., (2000), Annales Zoologici Fennici, 37, pp. 43
  • 10.1098/rsos.140262
  • 10.1186/s12936‐016‐1220‐y
  • 10.1111/1749‐4877.12625
  • 10.1111/j.1365‐2656.2007.01255.x
  • 10.1098/rspb.2011.1546
  • 10.2307/3546559
  • Cozzarolo C. S., (2022), Parasites & Vectors, 15, 10.1186/s13071-022-05292-w
  • 10.1371/journal.pone.0216360
  • Cramp S., (1993), Flycatchers to shrikes
  • Cramp S., (1998), The complete birds of the Western Palearctic (CD‐ROM), version 1.0
  • 10.1046/j.1365-294x.2000.01094-14.x
  • 10.1093/beheco/arm029
  • 10.1016/j.ijpara.2020.03.013
  • 10.1098/rspb.2006.3510
  • 10.1089/vbz.2013.1536
  • 10.1007/BF01651654
  • 10.1016/j.avrs.2022.100038
  • 10.3382/ps.0490034
  • 10.1111/j.1095-8312.1999.tb01171.x
  • 10.1046/j.1365-294x.1998.00389.x
  • 10.1126/science.3871252
  • Gutiérrez‐López R., (2019), Parasites & Vectors, 12, pp. 1, 10.1186/s13071-019-3342-x
  • 10.1038/s41598‐018‐21994‐7
  • 10.7589/0090-3558-33.3.486
  • 10.1371/journal.pone.0141391
  • 10.1016/S1471-4922(01)02116-X
  • 10.1098/rspb.1995.0102
  • 10.1111/j.0141‐9838.2004.00710.x
  • 10.1111/j.1365‐2656.2011.01893.x
  • 10.1017/CBO9780511610493
  • 10.1007/s002650050250
  • Mainwaring M. C., (2010), Ibis, 153, pp. 175, 10.1111/j.1474-919X.2010.01071.x
  • 10.1007/s10336-012-0828-0
  • Martínez‐Abraín A., (2004), Ardeola, 51, pp. 225
  • 10.1111/j.1365-294X.2011.05136.x
  • 10.1016/j.actao.2010.07.008
  • 10.2307/3546970
  • 10.1098/rspb.2000.1312
  • 10.1046/j.1365-2656.2000.00438.x
  • 10.1086/423714
  • 10.1086/285851
  • 10.1007/s00442-005-0133-1
  • 10.1016/j.cois.2017.03.003
  • 10.1046/j.1365-294X.2000.105338.x
  • 10.1073/pnas.92.4.1192
  • 10.1046/j.1471-8286.2003.00498.x
  • 10.1046/j.1365-2486.2002.00496.x
  • 10.1890/0012-9658(1998)079[1939:GAESIN]2.0.CO;2
  • 10.1113/jphysiol.1905.sp001124
  • 10.2307/4089195
  • 10.1111/j.1600-0587.2000.tb00286.x
  • 10.1146/annurev.ento.44.1.131
  • 10.1146/annurev‐ento‐120811‐153618
  • 10.1016/j.anbehav.2007.08.018
  • 10.1016/j.anbehav.2006.06.016
  • 10.1642/0004-8038(2006)123[1013:NWAFHI]2.0.CO;2
  • Valkiūnas G., (2005), Avian malaria parasites and other haemosporidia, pp. 932
  • 10.1186/s13071‐018‐2708‐9
  • 10.1111/brv.12706
  • Yan J., (2017), International Journal for Parasitology, 48, pp. 257