¿Cuál será el coste de las tecnologías de generación eléctrica renovable en el futuro?

  1. Pablo DEL RÍO 1
  2. Christoph P. KIEFER 2
  1. 1 Consejo Superior de Investigaciones Científicas
    info

    Consejo Superior de Investigaciones Científicas

    Madrid, España

    ROR https://ror.org/02gfc7t72

  2. 2 Fraunhofer ISI
Revista:
Papeles de economía española

ISSN: 0210-9107

Año de publicación: 2022

Número: 174

Páginas: 34-50

Tipo: Artículo

Otras publicaciones en: Papeles de economía española

Resumen

Las tecnologías renovables y, más concretamente, las tecnologías de generación eléctrica basadas en fuentes de energía renovables constituyen un pilar básico en la transición energética necesaria para lograr los objetivos del Acuerdo de París, y su coste es un elemento relevante en la misma. El objetivo de este trabajo es identificar los rangos de costes nivelados probables de dichas tecnologías en el futuro, con especial atención a las tecnologías eólicas y solares. La revisión sistemática de la literatura ha permitido identificar 25 documentos con predicciones de los costes nivelados a futuro en distintos países del mundo. Nuestros resultados muestran un rango de costes en 2030 para la eólica terrestre de entre 16 y 129 euros/MWh, entre 43 y 178 euros /MWh para la eólica marina, entre 31 y 152 euros/MWh para la solar fotovoltaica de techo y entre 14 y 117 euros/MWh para suelo y de entre 44 y 105 /MWh para la solar termoeléctrica. Los rangos de costes a 2050 serían menores, y a un nivel inferior: entre 15 y 40 eurosMWh para la eólica terrestre, 25 y 80 euros/MWh para la eólica marina, 9 y 83 euros/MWh para la solar fotovoltaica y 45 y 101 euros/ MWh para la solar termoeléctrica. Estos costes futuros suponen reducciones considerables con respecto a los costes actuales. En términos porcentuales, las mayores reducciones esperadas tendrán lugar en la eólica marina y la solar fotovoltaica, seguida de la solar termoeléctrica y la eólica terrestre.

Referencias bibliográficas

  • ALDERSEY-WILLIAMS, J. y RUBERT, T. (2019). Levelised cost of energy – A theoretical justification and critical assessment. Energy Policy, 124, pp. 169-179.
  • BREITSCHOPF , B. y HELD, A. (2013). Guidelines for assessing costs and benefits of RET deployment. Retrieved from http://diacore.eu/
  • COMISIÓN EUROPEA (2022). Renewable energy targets. Retrieved from https://energy.ec.europa.eu/topics/renewable-energy/renewableenergy-directive-targets-andrules/renewable-energy-targets_ en#:~:text=Building por 10020on por 10020the por 1002020 por 10025 por 10020target,possible por 10020upwards por 10020revision por 10020by por 100202023
  • COOKE, R. M. (1991). Heuristics and Biases. In Experts in Uncertainty. Opinion and Subjective Probability in Science (pp. 63-79). New York: Oxford University Press.
  • DECC (2016). Review of Renewable Electricity Generation Cost and Technical Assumptions. London, UK. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/566718/Arup_Renewable_ Generation_Cost_Report.pdf
  • DEHGHANI-SANIJ, A., AL-HAQ, A., BASTIAN, J., LUEHR, G., NATHWANI, J., DUSSEAULT, M. y LEONENKO, Y. (2022). Assessment of current developments and future prospects of wind energy in Canada. Sustainable Energy Technologies and Assessments, 50, 101819.
  • EGLI, F., STEFFEN, B. y SCHMIDT, T. S. (2018). A dynamic analysis of financing conditions for renewable energy technologies. Nature Energy, 3(12), pp. 1084-1092.
  • EIA (2021). Levelized Costs of New Generation Resources in the Annual Energy Outlook 2021. Retrieved from https://www.eia.gov/outlooks/aeo/pdf/electricity_generation.pdf
  • GRAHAM, P. W., HAYWARD, J., FOSTER, J. y HAVAS, L. (2021). GenCost 2020-21. Retrieved from https://publications.csiro.au/rpr/pub?pid=csiro:EP2081 81&expert=false&sb=RECENT
  • GRAHAM, P. W., HAYWARD, J., FOSTER, J., STORY, O. y HAVAS, L. (2018). GenCost 2018. Updated projections of electricity generation technology costs. Retrieved from https:// www.csiro.au/~/media/Newsreleases/2018/renewables-cheapestnew-power/GenCost2018.pdf
  • GROSS, R., HEPTONSTALL, P., GREENACRE, P., CANDELISE, C., JONES, F. y CASTILLO, A. C. (2013). Presenting the Future: An assessment of future costs estimation methodologies in the electricity generation sector. Retrieved from https://d2e1qxpsswcpgz.cloudfront.net/uploads/2020/03/presentingthe-future-electricity-generationcost-estimation-methodologies.pdf
  • HOGARTH, R. (1987). Judgement and Choice: The Psychology of Decision. Chichester, New 5ork, Brisbane: Toronto: John Wiley & Sons.
  • HUEBNER, G. M., NICOLSON, M. L., FELL, M. J., KENNARD, H., ELAM, S., HANMER, C. y JOHNSON, C. (2017). Are we heading towards a replicability crisis in energy efficiency research? A toolkit for improving the quality, transparency and replicability of energy efficiency impact evaluations. En Proceedings of the European Council for an Energy Efficient Economy ECEEE 2017 Summer Study on energy efficiency: consumption, efficiency and limits. UKERC: London, UK.
  • IEA (2020). Projected Costs of Generating Electricity . Paris, France. Retrieved from https://inis.iaea.org/search/search.aspx?orig_q=RN:52007078
  • IEA (2021). 3orld Energy Outlook. Retrieved from https://www.iea.org/reports/world-energy-outlook-2021
  • IPCC (2022). 6th Assessment report WGIII. Retrieved from https://www.ipcc.ch/2022/04/04/ipcc-ar6-wgiiipressrelease/
  • IRENA (2016). The Power to Change: Solar and 3ind Cost Reduction Potential to 2025 (9789295111974). Retrieved from https://www.irena.org/publications/2016/Jun/ThePower-to-Change-Solar-and-WindCost-Reduction-Potential-to-2025
  • IRENA (2019a). Future of solar photovoltaic. Deployment, investment, technology, grid integration and socio-economic aspects. Abu Dhabi. Retrieved from https://www.irena.org/ publications/2019/Nov/Future-ofSolar-Photovoltaic
  • IRENA (2019b). Future of wind. Deployment, investment, technology, grid integration and socio-economic aspects. Abu Dhabi. Retrieved from https://www.irena.org/publications/2019/Oct/Futureof-wind
  • IRENA (2019c). Global Energy Transformation. A Roadmap to 2050. Retrieved from https://www.irena.org/publications/2019/Apr/ Global-energy-transformation-Aroadmap-to-2050-2019Edition
  • IRENA (2021). Renewable power generation costs in 2020. Retrieved from https://www.irena.org/publications/2021/Jun/RenewablePower-Costs-in-2020
  • JOSKOW, P. L. (2011). Comparing the costs of intermittent and dispatchable electricity generating technologies. American Economic Review, 101(3), pp. 238-241.
  • KHAN, K. S., KUNZ, R., KLEIJNEN, J.y ANTES, G. (2003). Five steps to conducting a systematic review. Journal of the Royal Society of Medicine, 96(3), pp. 118-121.
  • KHATIB, H. y DIFIGLIO, C. (2016). Economics of nuclear and renewables. Energy Policy, 96, pp. 740-750.
  • KÖBERLE, A. C., GERNAAT, D. E. H. J. y VAN VUUREN, D. P. (2015). Assessing current and future techno-economic potential of concentrated solar power and photovoltaic electricity generation. Energy, 89, pp. 739-756. doi:10.1016/j.energy.2015.05.145
  • KOST, C., SHAMMUGAM, S., FLURI, V., PEPER, D., DAVOODI MEMAR, A. y SCHLEGL, T. (2021). Levelized cost of electricity renewable energy technologies. Freiburg, Germany. Retrieved from https://www.ise.fraunhofer.de/content/dam/ise/en/documents/publications/studies/EN2021_ Fraunhofer-ISE_LCOE_Renewable_Energy_Technologies.pdf
  • LEVI, P. G. y POLLITT, M. G. (2015). Cost trajectories of low carbon electricity generation technologies in the UK: A study of cost uncertainty. Energy Policy, 87, pp. 48-59.
  • MENG, J., WAY, R., VERDOLINI, E. y DÍAZ ANADÓN, L. (2021). Comparing expert elicitation and model-based probabilistic technology cost forecasts for the energy transition. Proc Natl Acad Sci U S A, 118(27). doi:10.1073/pnas.1917165118
  • MURPHY, C., SUN, Y., COLE, W. J., MACLAURIN, G. J., MEHOS, M. S. y TURCHI, C. S. (2019). The potential role of concentrating solar power within the context of DOE’s 2030 solar cost targets. Retrieved from https://www.nrel.gov/docs/fy19osti/71912.pdf
  • NACIONES UNIDAS (2022). Objetivo 7: Garantizar el acceso a una energía asequible, segura, sostenible y moderna. Retrieved from https://www.un.org/sustainabledevelopment/es/energy/
  • NUCLEAR ENERGY AGENCY & INTERNATIONAL ENERGY AGENCY (2005). Projected Costs of Generating Electricity-2005 Update. Retrieved from https://www. Oecd-ilibrary.org/energy/projectedcosts-of-generating-electricity2005_9789264008274-en
  • PARRADO, C., GIRARD, A., SIMON, F. y FUENTEALBA, E. (2016). 2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile. Energy, 94, pp. 422-430. doi:10.1016/j. energy.2015.11.015
  • RAM, M., CHILD, M., AGHAHOSSEINI, A., BOGDANOV, D., LOHRMANN, A. y BREYER, C. (2018). A comparative analysis of electricity generation costs from renewable, fossil fuel and nuclear sources in G20 countries for the period 2015-2030. Journal of Cleaner Production, 199, pp. 687-704. doi:10.1016/j. jclepro.2018.07.159
  • RATHMANN, M. (2011). Towards triple-A policies: More renewable energy at lower cost. A report compiled within the European research project REShaping (work package 7). Retrieved from www.reshaping-res-policy.eu
  • RÍO, P. DEL, KIEFER, C. P., MENZIES, C., MARQUARDT, M., FITCH-ROY, O. y WOODMAN, B. (2020). Effects of auctions on RES value chains. Madrid. Retrieved from http://aures2project.eu/wp-content/ uploads/2020/10/AURES_II_D4_1_ effects_value_chain_upt.pdf
  • RUBIO-DOMINGO, G. y LINARES, P. (2021). The future investment costs of offshore wind: An estimation based on auction results. Renewable and Sustainable Energy Reviews, 148, 111324.
  • SCHMIDT, T. S., STEFFEN, B., EGLI, F., PAHLE, M., TIETJEN, O. y EDENHOFER, O. (2019). Adverse effects of rising interest rates on sustainable energy transitions. Nature Sustainability, 2(9), pp. 879-885.
  • SENS, L., NEULING, U. y KALTSCHMITT, M. (2022). Capital expenditure and levelized cost of electricity of photovoltaic plants and wind turbines–Development by 2050. Renewable Energy, 185, pp. 525-537.
  • SHARMA, C., SHARMA, A. K., MULLICK, S. C. y KANDPAL, T. C. (2018). Cost reduction potential of parabolic trough based concentrating solar power plants in India. Energy for Sustainable Development, 42, pp. 121-128.
  • SOVACOOL, B. K., AXSEN, J. y SORRELL, S. (2018). Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design. Energy Research & Social Science, 45, pp. 12-42. doi:10.1016/j.erss.2018.07.007
  • STARK, C., PLESS, J., LOGAN, J., ZHOU, E. y ARENT, D. J. (2015). Renewable electricity: Insights for the coming decade. Retrieved from https://www.osti.gov/biblio/1176740
  • STEHLY, T., BEITER, P. y DUFFY, P. (2020). 2019 Cost of Wind Energy Review. United States. Retrieved from https:/www.osti.gov/biblio/1756710
  • TU, Q., BETZ, R., MO, J., FAN, Y. y LIU, Y. (2019). Achieving grid parity of wind power in China–Present levelized cost of electricity and future evolution. Applied Energy, 250, 1053-1064.
  • UECKERDT, F., HIRTH, L., LUDERER, G. y EDENHOFER, O. (2013). System LCOE: What are the costs of variable renewables? Energy, 63, pp. 61-75.
  • UNITED NATIONS FRAMEWORK CONVENTION ON CLIMATE CHANGE (UNFCCC) (2022). El Acuerdo de Paris. Retrieved from https://unfccc.int/es/process-andmeetings/the-paris-agreement/elacuerdo-de-paris
  • VARTIAINEN, E., MASSON, G., BREYER, C., MOSER, D. y ROMÁN MEDINA, E. (2019). Impact of weighted average cost of capital, capital expenditure, and other parameters on future utilityscale PV levelised cost of electricity. Progress in Photovoltaics: Research and Applications, 28(6), pp. 439- 453. doi:10.1002/pip.3189
  • VERONESE, E., MANZOLINI, G. y MOSER, D. (2021). Improving the traditional levelized cost of electricity approach by including the integration costs in the techno-economic evaluation of future photovoltaic plants. International Journal of Energy Research, 45(6), pp. 9252-9269. doi:10.1002/er.6456
  • WAY, R., MEALY, P. y FARMER , D. (2021). Estimating the costs of energy transition scenarios using probabilistic forecasting methods. INET Oxford 3orking Paper, n.º 2021-01. Retrieved from https://www.inet.ox.ac.uk/files/energy_transition_cost_INET_working_paper_with_SI1.pdf
  • WILLIAMS, E., HITTINGER, E., CARVALHO, R. y WILLIAMS, R. (2017). Wind power costs expected to decrease due to technological progress. Energy Policy, 106, pp. 427-435. doi:10.1016/j.enpol.2017.03.032
  • WISER, R., BARBOSE, G. y HOLT, E. (2011). Supporting solar power in renewables portfolio standards: Experience from the United States. Energy Policy, 39(7), pp. 3894-3905.
  • WISER, R., JENNI, K., SEEL, J., BAKER, E., HAND, M., LANTZ, E. y SMITH, A. (2016). Expert elicitation survey on future wind energy costs. Nature Energy, 1(10), pp. 1-8.
  • WISER, R., RAND, J., SEEL, J., BEITER, P., BAKER, E., LANTZ, E. y GILMAN, P. (2021). Expert elicitation survey predicts 37 por 100 to 49 por 100 declines in wind energy costs by 2050. Nature Energy, 6(5), 555-565. doi:10.1038/s41560-021-00810-z
  • ZHUANG, X., XU, X., LIU, W. y XU, W. (2019). LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China. Energies, 12(7). doi:10.3390/ en12071394