Frozen ground and snow cover monitoring in Livingston and Deception islands, Antarcticapreliminary results of the 2015-2019 PERMASNOW project
- M. A. de Pablo 1
- J. J. Jiménez 1
- M. Ramos 1
- M. Prieto 1
- A. Molina 2
- G. Vieira 4
- M.A. Hidalgo 1
- S. Fernández 3
- C. Recondo 3
- J. F. Calleja 3
- J. J. Peón 3
- A. Corbea Pérez 3
- C.N. Maior 1
- M. Morales 1
- C. Mora 4
-
1
Universidad de Alcalá
info
-
2
Centro de Astrobiología
info
-
3
Universidad de Oviedo
info
-
4
Universidade de Lisboa
info
ISSN: 0211-6820, 1697-9540
Ano de publicación: 2020
Volume: 46
Número: 1
Páxinas: 187-222
Tipo: Artigo
Outras publicacións en: Cuadernos de investigación geográfica: Geographical Research Letters
Resumo
Since 2006, our research team has been establishing in the islands of Livingston and Deception, (South Shetland archipelago, Antarctica) several monitoring stations of the active layer thickness within the international network Circumpolar Active Layer Monitoring (CALM), and the ground thermal regime for the Ground Terrestrial Network-Permafrost (GTN-P). Both networks were developed within the International Permafrost Association (IPA). In the GTN-P stations, in addition to the temperature of the air, soil, and terrain at different depths, the snow thickness is also monitored by snow poles. Since 2006, a delay in the disappearance of the snow layer has been observed, which could explain the variations we observed in the active layer thickness and permafrost temperatures. Therefore, in late 2015 our research group started the PERMASNOW project (2015-2019) to pay attention to the effect of snow cover on ground thermal This project had two different ways to study the snow cover. On the first hand, in early 2017 we deployed new instrumentation, including new time lapse cameras, snow poles with high number of sensors and a complete and complex set of instruments and sensors to configure a snow pack analyzer station providing 32 environmental and snow parameters. We used the data acquired along 2017 and 2018 years with the new instruments, together with the available from all our already existing sensors, to study in detail the snow cover. On the other hand, remote sensing data were used to try to map the snow cover, not only at our monitoring stations but the entire islands in order to map and study the snow cover distribution, as well as to start the way for future permafrost mapping in the entire islands. MODIS-derived surface temperatures and albedo products were used to detect the snow cover and to test the surface temperature. Since cloud presence limited the acquisition of valid observations of MODIS sensor, we also analyzed Terrasar X data to overcome this limitation. Remote sensing data validation required the acquirement of in situ ground-true data, consisting on data from our permanent instruments, as well as ad hoc measurements in the field (snow cover mapping, snow pits, albedo characterization, etc.). Although the project is finished, the data analysis is still ongoing. We present here the different research tasks we are developing as well as the most important results we already obtained about the snow cover. These results confirm how the snow cover duration has been changing in the last years, affecting the ground thermal behavior.
Información de financiamento
This work has been supported by funds from the Ministry of Economy of the Government of Spain by the Polar Research Program (PERMASNOW CTM2014-52021-R) and the PERMATHERMAL arrangement between the University of Alcalá, the Spanish Institute of Geology and Mining, and the Spanish Polar Committee for the maintenance of the monitoring stations in Deception and Livingston Islands. We thank to the 2016-2017, 2017-2018 and 2018-2019 crews of Gabriel de Castilla and Juan Carlos I Spanish Antarctic Stations in Deception and Livingston Islands respectively for their support on the development of the field tasks of the PERMASNOW project. Part of this research was possible thank to the Research Agreement with the Deutsches Zentrum für Luft-und Raumfahrt (German Government) for the acquisition of TerraSAR X images. Authors want to thank to the two anonymous referees for their useful comments that helped to improve the manuscript.Financiadores
-
MINECO
Spain
- PERMA-SNOW: Caracterización y evolución de la cubierta nival y su efecto en el régimen térmico del permafrost y la capa activa en las islas Livingston y Decepción (Antártida)
Referencias bibliográficas
- Abramov, A., Davydov, S., Ivashchenko, A., Karelin, D., Kholodov, A., Kraev, G., Lupachev, A., Maslakov, A., Ostroumov, V., Rivkina, E., Shmelev, D., Sorokovikov, V., Tregubov, O., Veremeeva, A., Zamolodchikov, D., Zimov, S. 2019. Two decades of active layer thickness monitoring in northeastern Asia. Polar Geography. https://doi.org/10.1080/1088937X.2019.1648581.
- Arduino CC 2014. Arduino: Introduction. [Online] https://www.arduino.cc/en/Guide/Introduction. [Accessed: 23-December-2019]
- Barrand, J.S., Vaughan, N.E., Steiner, D., Tedesco, N., Kuipers Munneke, M., van den Broeke, M., Hosking, M.R. 2013. Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling. Journal of Geophysical Research Earth Surface 118, 315-330.
- Bauer F.H., Taylor D., White R.A., Amend, O. 2019. Educational Outreach and International Collaboration Through ARISS: Amateur Radio on the International Space Station. In: H. Pasquier, C. Cruzen, M. Schmidhuber, Y. Lee (Eds), Space Operations: Inspiring Humankind's Future. Springer.
- Ben-Dor, E., Chabrillat, S., Dematte, J.A.M., Taylor, G.R., Hill, J., Whiting, M.L., Sommer, S. 2009. Using imaging spectroscopy to study soil properties. Remote Sensing of Environment 113, S38-S55. https://doi.org/10.1016/j.rse.2008.09.019.
- Biskaborn, B.K., Lanckman, J.P., Lantuit, H., Elger, K., Dmitry, S., William, C., Vladimir, R. 2015. The new database of the Global Terrestrial Network for Permafrost (GTN-P). Earth System Science Data 7, 245-259. https://doi.org/10.5194/essd-7-245-2015.
- Biskaborn, B.K., Smith, S.L., Noetzli, J., Matthes, H., Vieira, G., Streletskiy, D.A., Schoeneich, P., Romanovsky, V.E., Lewkowicz, A.G., Abramov, A., Allard, M., ... Lantuit, H. 2019. Permafrost is warming at a global scale. Nature Communications 10, 1-11. https://doi.org/10.1038/s41467-018-08240-4.
- Bockheim, J., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., Wilhelm, K., Nieuwendam, A. 2013. Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change 100, 215-223. https://doi.org/10.1016/j.gloplacha.2012.10.018.
- Brown, J., Nelson, F.E., Hinkel, K.M. 2000. The circumpolar active layer monitoring (CALM) program research designs and initial results. Polar Geography 3, 165-258.
- Calleja, J.F., Corbea-Pérez, A., Fernández, S., Recondo, C., Peón, J., de Pablo, M.A. 2019. Snow albedo seasonality and trend from MODIS sensor and ground data at Johnsons Glacier, Livingston Island, Maritime Antarctica. Sensors 19, 3659. https://doi.org/10.3390/s19163569.
- Chang, C.W., Laird, D.A., Mausbach, M.J., Hurburgh, C.R. 2001. Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties. Soil Science Society of America Journal 65, 480-490. https://doi.org/10.2136/sssaj2001.652480x.
- Cook, F.A. 1955. Near surface soil temperature measurements at Resolute Bay, Northwest Territories. Arctic 8 (4), 237-249. https://doi.org/10.14430/arctic3822.
- Corripio, J.G. 2004. Snow surface albedo estimation using terrestrial photography. International Journal of Remote Sensing 25, 5705-5729. https://doi.org/10.1080/01431160410001709002.
- Croft, H., Kuhn, N.J., Anderson, K. 2012. On the use of remote sensing techniques for monitoring spatio-temporal soil organic carbon dynamics in agricultural systems. Catena 94, 64-74. https://doi.org/10.1016/j.catena.2012.01.001.
- Danby, R.K., Hik, D.S. 2007. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Global Change Biology 13 (2), 437-451. https://doi.org/10.1111/j.1365-2486-2006.01302.x.
- de Pablo, M.A., Blanco, J.J., Molina, A., Ramos, M., Quesada, A., Vieira, G. 2013. Interannual active layer variability at the Limnopolar Lake CALM site on Byers Peninsula, Livingston Island, Antarctica. Antarctic Science 25 (2), 167-180.
- de Pablo, M.A., Ramos, M., Molina, A. 2014. Thermal characterization of the active layer at the Limnopolar lake CALM site on Byers Peninsula (Livingston Island), Antarctica. Solid Earth 5, 721-739. https://doi.org/10.1017/S0954102012000818.
- de Pablo, M.A., de Pablo, C., Ramos, M. 2015. Improvements on Permarduino prototype device for active layer and permafrost thermal monitoring, and automatic digital camera development. V Conferencia Ibérica de la International Permafrost Association, Valladolid, Spain. Abstract, 23.
- de Pablo, M.A., Ramos, M., Molina, A., Vieira, G., Hidalgo M.A., Prieto, M., Jiménez, J.J., Fernández, S., Recondo, C., Calleja J.F., Peón J.J., Mora, C. 2016. Frozen ground and snow cover monitoring in the South Shetland Islands, Antarctica: Instrumentation, effects on ground thermal behaviour and future research. Cuadernos de Investigación Geográfica 42 (2), 475-495. https://doi.org/10.18172/cig.2917.
- de Pablo, M.A., Ramos, M., Molina, A. 2017a. Snow cover evolution, on 2009-2014, at the Limnopolar Lake CALM-S site on Byers Peninsula, Livingston Island, Antarctica. Catena 149 (2), 538-547. https://doi.org/10.1016/j.catena.2016.06.002.
- de Pablo, M.A., de Pablo, C., Prieto, M. 2017. Permarduino datalogger for thermal monitoring of permafrost and active layer. In: J. Ruiz-Fernández, C. García-Hernández, M. Oliva, C. Rodríguez-Pérez, D. Gallinar (Eds.), Ambientes periglaciares: avances en su estudio, valoración patrimonial y riesgos asociados, Universidad de Oviedo, 181.
- Fernández, S., Gallego, M.J., de Pablo, M.A., Ramos, M., Vieira, G. 2017. Análisis de patrones de nieve y sus relaciones con la temperatura del aire y del suelo en series temporales de fotografía digital RGB, CALM-S Crater Lake, isla Decepción, Antártida. In: J. Ruiz-Fernández, C. García-Hernández, M. Oliva, C. Rodriguez-Pérez, D. Gallinar (Eds.), Ambientes periglaciares: avances en su estudio, valoración patrimonial y riesgos asociados, Universidad de Oviedo, pp. 207-215.
- de Pablo, M.A., Ramos, M., Molina, A. 2018. Thaw depth spatial and temporal variability at the Limnopolar Lake CALM-S site, Byers Peninsula, Livingston Island, Antarctica. Science of the Total Environment 615, 814-827. https://doi.org/10.1016/j.scitotenv.2017.09.284.
- de Pablo, M.A., Molina, A., Ramos, M., Vieira, G., Prieto, M., Hidalgo, M.A., Jiménez, J.J. 2019a. Snow cover thickness evolution on 2006-2018 at Deception and Livingston island, Antarctica. Abstracts of the VII Iberian Conference of the International Permafrost Association, Jaca, Spain, 66.
- de Pablo, M.A., de Pablo, C., Prieto, M. 2019b. Testing Permarduino device on extreme and harsh weather conditions in Antarctica. Abstracts of the VII Iberian Conference of the International Permafrost Association, Jaca, Spain, 96.
- de Pablo, M.A., Jiménez, J.J., Prieto, M., Ramos, M., Hidalgo, M.A. 2019c. Snow pack properties and thermal behaviour, and their evolution at the Crater Lake CALM site, Deception island, Antarctica. Abstracts of the VII Iberian Conference of the International Permafrost Association, Jaca, Spain, 54.
- de Pablo, M.A., Jiménez, J.J., Prieto, M., Ramos, M., Hidalgo, M.A. 2019d. Snow cover effect on active layer thickness and ground surface temperature at Limnopolar Lake CALM site (Byers peninsula, Livingston island), Antarctica. Abstracts of the VII Iberian Conference of the International Permafrost Association, Jaca, Spain, 53.
- de Pablo, M.A., de Pablo, C., Ramos, M. 2014. A prototype of an open hardware-based device for active layer and frozen ground monitoring: PERMARDUINO. Book of Abstracts of EUCOP4 – 4th European Conference on Permafrost. 18-21 June 2014, Évora, Portugal, 444.
- Gehl, R.J., Rice, C.W. 2007. Emerging technologies for in situ measurement of soil carbon. Climate Change 80, 43-54. https://doi.org/10.1007/s10584-006-9150-2.
- Goodrich, L.E. 1982. The influence of snow cover on the ground thermal regime. Canadian Geotechnical Journal 19. 421-432. https://doi.org/10.1007/s10584-006-9150-2.
- Guglielmin, M., Evans, C.J.E., Cannone, N. 2008. Active layer thermal regime under different vegetation conditions in permafrost areas. A case study at Signy Island (Maritime Antarctica). Geoderma 144, 73-85. https://doi.org/10.1016/j.geoderma.2007.10.010.
- Härer, S., Bernhardt, M., Corripio, J.G., and Schulz, K. 2013. PRACTISE – Photo Rectification and Classification Software (V.1.0). Geoscientific Model Development 6, 837-848.
- Hoelzle, M., Haeberli, W., Keller, F, 1993. Application of BTS-measurements for modelling mountain permafrost distribution. Proceedings 6th International Conference on Permafrsost, Vol. 1. 272-277.
- Houghton, D.D. 1985. Handbook of applied meteorology. John Willey, New York.
- Hrbáček, F. and Uxa, T. 2019 The evolution of a near-surface ground thermal regime and modelled active-layer thickness on James Ross Island, Eastern Antarctic Peninsula, in 2006-2016. Permafrost and Periglacial Processes. https://doi.org/10.1002/ppp.2018.
- Hrbáček, F., Láska, K., Engel, Z. 2016a. Effect of snow cover on the active-layer thermal regime – A case study from James Ross Island, Antarctic Peninsula. Permafrost and Periglacial Processes 27, 307-315. https://doi.org/10.1002/ppp.1871.
- Hrbáček, F., Oliva, M., Laska, K., Ruiz-Fernández, J., de Pablo, M.A., Vieira, G., Ramos, M., Nývlt, D., 2016b. Active layer thermal regime in two climatically contrasted sites of the Antarctic Peninsula region. Cuadernos de Investigación Geográfica 42 (2), 457-474. https://doi.org/10.18172/cig.2915.
- Hrbáček, F., Vieira, G., Oliva, M., Balks, M., Guglielmin, M., de Pablo, M.A., Molina, A., Ramos, M., Goyanes, G., Meiklejohn, I., Abramov, A., Demidov, N., Fedorov-Davydov, D., Lupachev, A., Rivkina, E., Láska, K., Kňažková, M., Nývlt, D., Raffi, R., Strelin, J., Sone, T., Fukui, K., Dolgikh, A., Zazovskaya, E., Mergelov, N., Osokin, N., Miamin, V. 2018. Active layer monitoring in Antarctica: an overview of results from 2006 to 2015. Polar Geography https://doi.org/10.1080/1088937X.2017.1420105.
- IPCC, 2013. Climate Change 2013: The Physical Science Basis. In: T.F. Stocker, D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (Eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, 1535 pp.
- IPCC, 2018. Summary for Policymakers. In: V. Masson-Delmotte, P. Zhai, H.O. Pörtner... and T. Waterfield (Eds.), Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In Press, available at: https://www.ipcc.ch/
- Ives, J.D. 1974. Permafrost. In: J.D. Ives, R.G. Barry (Eds.), Arctic and Alpine Environments. Methuen, London, pp. 159-194.
- Jafarov, E.E., Nicolsky, D.J., Romanovsky, V.E., Walsh, J.E., Panda, S.K., Serreze, M.C. 2014. The effect of snow: How to better model ground surface temperatures. Cold Regions Science and Technology 102, 63-77. https://doi.org/10.1016/j.coldregions.2014.02.007.
- Jafarov, E.E., Marchenko, S.S., Romanovsky, V.E. 2012. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. The Cryosphere, 6, 613-624. https://doi.org/10.5194/tc-6-613-2012.
- Jiménez, J.J., Ramos, M., de Pablo, M.A., Vieira, G., Molina, A., 2013. Active layer thermal variability, snow thickness coupled, in the vicinity of the Spanish Antarctic Station Juan Carlos I. In Avances, métodos y técnicas de estudio del periglaciarismo/Avanços, métodos y técnicas para o estudio do periglaciarismo. Publicacions i Edicions de la Universitat de Barcelona, Barcelona, pp. 287-300.
- Jiménez, J.J., Ramos, M., Vieira, G. 2016. El balance energético suelo/aire en las regiones con suelos helados mediatizado por el efecto aislante de la cobertura nival. El caso del Archipiélago de las Islas Shetland del Sur (Antártida). In: Quintas Jornadas de Jóvenes Investigadores de la Universidad de Alcalá. Universidad de Alcalá, Madrid, pp. 23-32.
- Jiménez, J.J., Ramos, M. 2019. Estudio de la cobertura nival en la Antártida Marítima mediante imágenes Radar y datos observacionales. In: Séptimas Jornadas de Jóvenes Investigadores de la Universidad de Alcalá. Universidad de Alcalá, Madrid, pp. 237-246.
- Jiménez, J.J., de Pablo, M.A., Ramos, M., Sánchez, J.M. 2019a. Metodología de clasificación de superficies innivadas mediante análisis de imágenes fotográficas periódicas en la Antartida Marítima. IPA Ibérico Jaca Proceedings.
- Jiménez, J.J., Ramos, M., Vieira, G., Pina, P., de Pablo, M.A. 2019b. Evolución de la cubierta nival estacional en la antartida marítima mediante imágenes Terrasar X. IPA ibérico Jaca Proceedings.
- Keller, F. 1992. Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO. Permafrost and Periglacial Processes 3 (2), 133-138. https://doi.org/10.1002/ppp.3430030210.
- Kelley, J.J., Weaver, D.F. 1969. Physical processes at the surface of the arctic tundra. Arctic 22 (4), 425-437. https://doi.org/10.14430/arctic3233.
- Laine, V. 2008. Antarctic ice sheet and sea ice regional albedo and temperature change, 1981-2000, from AVHRR Polar Pathfinder data. Remote Sensing of the Environment 112, 646-667.
- Levin, N., Ben-Dor, E., Singer. A. 2005. A Digital Camera as A Tool to Measure Color Indices and Related Properties of Sandy Soils in Semi-Arid Environments. International Journal of Remote Sensing 26 (24), 5475-5492. https://doi.org/10.1080/01431160500099444.
- Lewkowicz, A.G. 2008. Evaluation of miniature temperature-loggers to monitor snowpack evolution at mountain permafrost sites, northwestern Canada. Permafrost and Periglacial Processes 19, 323-331. https://doi.org/10.1002/ppp.625.
- Louis, L. 2016. Working principle of Arduino and using it as a tool for study and research. International Journal of Control, Automation, Communication and Systems, 1 (2), 21-29.
- Lunardini, V.J. 1978. Theory of n-factors and correlation of data. In Proceedings, 3rd International Conference on Permafrost, Edmonton, Alberta, July 10-13, 1978. National Research Council of Canada. Ottawa, ON. 1, pp. 40-46.
- Mackiewicz, M.C. 2012. A new approach to quantifying soil temperature responses to changing air temperature and snow cover. Polar Science 6, 226-236. https://doi.org/10.1016/j.polar.2012.06.003.
- Maior, C.N. 2019. Caracterización del permafrost y la capa activa en la región de Crater Lake, Isla Decepción, Antártida. BSc Thesis, University of Alcalá, Spain. 60 pp.
- Maior, C.N., de Pablo, M.A., Prieto, M., Ramos, M., Vieira, G., Abramov, A. 2019. Thermal evolution of permafrost and active layer at the Crater Lake monitoring site, Deception island, Antarctica. Abstracts of the VII Iberian Conference of the International Permafrost Association, Jaca, Spain, 8.
- Malik, M.J., van der Velde, R., Vekerdy, Z., Su, Z. 2012. Assimilation of satellite-observed snow albedo in a land surface model. Journal of Hydrometeorology 13 (3), 1119-1130. https://doi.org/10.1175/JHM-D-11-0125.1.
- Marchenko, S., Romanovsky, V.E., Tipenko, G. 2008. Numerical modeling of spatial permafrost dynamics in Alaska. In: In Proceedings of the Eighth International Conference on Permafrost. Willey, Institute of Northern Engineering, University of Alaska, Fairbanks, pp. 190-204.
- Marsh, P., Woo, M.K., 1984. Wetting front advance and freezing of meltwater whitin a snow cover. Observations in the Canadian Arctic. Water Resources Research 16, 1853-1864. https://doi.org/10.1029/WR020i012p01853.
- Matsuoka, N. 2006. Monitoring periglacial processes: Towards construction of a global network. Geomorphology 80, 20-31. https://doi.org/10.1016/j.geomorph.2005.09.005.
- Matsuoka, N., Humlum, O. 2003. Monitoring periglacial processes: new methodology and technology. Permafrost and Periglacial Procceses 14, 299-303. https://doi.org/10.1002/ppp.461.
- Mora, C., Jiménez, J.J., Pina, P., Catalão, J., Vieira, G. 2017. Evaluation of single-band snow-patch mapping using high-resolution microwave remote sensing: An application in the maritime Antarctic. Cryosphere 11 (1), 139-155. https://doi.org/10.5194/tc-11-139-2017.
- Mora, C., Vieira, G., Ramos, M. 2013. Evaluation of Envisat ASAR IMP imagery for snow mapping at varying spatial resolution (Deception Island, South Shetlands – Antarctica). Geological Society, London, Special Publications. https://doi.org/10.1144/SP381.19.
- Morales, M. 2017. Evolución térmica y del espesor de la capa activa en el CALM Crater Lake de Isla Decepción, Antártida. BSc Thesis, University of Alcalá, Spain. (in Spanish), 38 pp.
- Morales, M., de Pablo, M.A. 2017. Relación entre el espesor de la capa active (ALT) y la temperatura del techo del permafrost (TTOP) en CALM-S Crater Lake, Isla Decepción, Antártida. In: J. Ruiz-Fernández, C. García-Hernández, M. Oliva, C. Rodríguez Pérez, D. Gallinar (Eds.), Ambientes periglaciares: avances en su estudio, valoración patrimonial y riesgos asociados Universidad de Oviedo.
- NASA (nad). Snow pits procedures. Available in: https://www.nasa.gov/pdf/186123main_SnowPitProcedures.pdf.
- Navarro, F., Jonsell, U.J., Corcuera, M.I., Martín-Español, A. 2013. Decelerated mass loss of Hurd and Johnsons Glaciers, Livingston Island, Antarctic Peninsula. Journal of Glaciology 59 (213), 115-128. https://doi.org/10.3189/2013joG12j144.
- Nelson, F.E., Shiklomanov, N.I., Hinkel, K.M., Christiansen, H.H. 2004. The Circumpolar active layer monitoring (CALM) Workshop and THE CALM II Program. Polar Geography 28 (4), 253-266, https://doi.org/10.1080/789610205.
- Nicolsky, D.J., Romanovsky, V.E., Tipenko, G.S. 2007. Using in situ temperature measurements to estimate saturated soil thermal properties by solving a sequence of optimization problems. The Cryosphere 1, 41-58. https://doi.org/10.5194/tc-1-41-2007.
- Nicolsky, D., Romanovsky, V., Panteleev, G.G. 2009. Estimation of soil thermal properties using in-situ temperature measurements in the active layer and permafrost, Cold Regions Science and Technology 55, 120-129. https://doi.org/10.1016/j.coldregions.2008.03.003.
- Nicolsky, D.J., Romanovsky, V.E., Panda, S.K., Marchenko, S.S., Muskett, R.R. 2017. Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope, Journal of Geophysical Research Earth Surface 122, 50-75. https://doi.org/10.1002/2016JF003852.
- Oliva, M., Hrbacek, F., Ruiz-Fernández, J., de Pablo, M.Á., Vieira, G., Ramos, M., Antoniades, D. 2017a. Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena 149, 548-559. https://doi.org/10.1016/j.catena.2016.07.011.
- Oliva, M., Navarro, F., Hrbáček, F., Hernández, A., Nývlt, D., Pereira, P., Ruiz-Fernández, J., Trigo, R. 2017b. Recent regional climate cooling on the Antarctic Peninsula and associated impacts on the cryosphere. Science of the Total Environment 580, 210-223. https://doi.org/10.1016/j.scitotenv.2016.12.030.
- Outcalt, S.I., Nelson, F.E., Hinkel, K.M. 1990. The zero-curtain effect: heat and mass transfer across an isothermal region in freezing soil. Water Resources Research 26 (7), 1509-1516. https://doi.org/10.1029/WR026i007p01509.
- Prieto, M., de Pablo, M.A. 2017. PERMARADIO: acceso remoto a datos de una estación antártica para el control térmico del permafrost. Abstracts of the VII Iberian Conference of the International Permafrost Association, Mieres, Spain.
- Recondo, C., Corbea-Pérez, A., Peón, J., Pendás, E., Ramos, M., Calleja, J.F., de Pablo, M.A., Fernández, S., Corrales, J.A. 2019. Variability of the air temperature and its comparison with MODIS Land Surface Temperature in the Hurd Peninsula of the Livingston Island, Antarctica, between 2000 and 2016. Under review.
- Sancho, L.G., Pintado, A., Navarro, F., Ramos, M., de Pablo, M.A., Blanquer, J.M., Raggio, J., Green, T.G.A. 2017. Recent warming and cooling in the Antarctic Peninsula region has rapid and large effects on lichen vegetation. Scientific Reports 7, 1-8.
- Santilli, G., Vendittozzi, C., Cappelletti, C., Battistini, S., Gessini, P. 2018. CubeSat constellations for disaster management in remote areas. Acta Astronautica 145, 11-17. https://doi.org/10.1016/j.actaastro.2017.12.050.
- Singh A.K. 2011. Snow Pit. In: V.P. Singh, P. Singh, U.K. Haritashya (Eds.) Encyclopedia of Snow, Ice and Glaciers. Encyclopedia of Earth Sciences Series. Springer, Dordrecht, pp. 1063-1064. https://doi.org/10.1007/978-90-481-2642-2_679.
- Smith, M.W., Riseborough, D.W. 2002. Climate and the limits of permafrost: A zonal analysis. Permafrost and Periglacial Processes 13. 1-15. https://doi.org/10.1002/ppp.410.
- Tipenko, G., Marchenko, S., Romanovsky, V., Groshev, V., Sazonova, T. 2004. Spatially distributed model of permafrost dynamics in Alaska, EOS, Transactions of the AGU, 85, Fall Meet. Suppl., Abstract C12A-02.
- Turner, J., Colwell, S.R., Marshall, G.J., Lachlan-Cope, T.A., Carleton, A.M., Jones, P.D., Lagun, V., Reid, P.A., Iagovkina, S. 2005. Antarctic climate change during the last 50 years. International Journal of Climatology 25, 279-294. https://doi.org/10.1002/joc.1130.
- Turner, J., Lu, H., White, I., King, J.C., Phillips, T., Hosking, J.S., Bracegirdle, T.J., Marshall, G.J., Mulvaney, R., Deb, P. 2016. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature 535, 411-415. https://doi.org/10.1038/nature18645.
- van Wessem, J.M., Ligtenberg, S.R.M., Reijmer, C.H., van de Berg, W.J., van den Broeke, M.R., Barrand, N.E., Thomas, E.R., Turner, J., Wuite, J., Scambos, T.A., van Meijgaard, E., 2016. The modelled surface mass balance of the Antarctic Peninsula at 5.5km horizontal resolution. The Cryosphere 10, 271-285. https://doi.org/10.5194/t.c-10-271-2016. Vasques, G.M., Grunwald, S., Sickman, J.O. 2008. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 146, 14-25. https://doi.org/10.1016/j.geoderma.2008.04.007.
- Venkataraman, G., Singh, G., Kumar, V. 2013. Snow cover area monitoring using multi-temporal TerraSAR-X data. Available at: http:sss.terrasar-x.dlr.de/papers_sci_meet_3/poster / LAN0122_Venkataraman.pdf.
- Vieira, G., Bockheim, J., Guglielmin, M., Balks, M., Abramov, A.A., Boelhouwers, J., Cannone, N., Ganzert, L., Gilichinsky, D.A., Goryachkin, S., López-Martínez, J., Meiklejohn, I., Raffi, R., Ramos, M., Schaefer, C., Serrano, E., Simas, F., Sletten, R., Wagner, D. 2010. Thermal state of permafrost and active-layer monitoring in the antarctic: Advances during the international polar year 2007-2009. Permafrost and Periglacial Processes 21, 182-197. https://doi.org/10.1002/ppp.685.
- Viscarra Rossel, R.A., Behrens, T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158, 46-54. https://doi.org/10.1016/j.geoderma.2009.12.025.
- Warren, S.G., 1982. Optical properties of snow. Reviews of Gephysics 20 (1), 67-89. https://doi.org/10.1029/RG020i001p00067.
- Westermann, S., Langer, M., Boike, J. 2011. Spatial and temporal variations of summer surface temperatures of high-arctic tundra on Svalbard — Implications for MODIS LST based permafrost monitoring. Remote Sensing of Environment 115, 908-922. https://doi.org/10.1016/j.rse.2010.11.018.
- Westermann, S., Langer, M., Boike, J. 2012. Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard, Norway. Remote Sensing of Environment 118, 162-167. https://doi.org/10.1016/j.rse.2011.10.025.
- Woo, M-K. 2012. Permafrost hydrology. Springer, London, 227 pp.
- Zhang, T. 2005. Influence of the seasonal snow cover on the ground thermal regime: an overview. Reviews of Geophysics 43, RG4002. https://doi.org/10.1029/2004RG000157.