Sensor resource management with evolutionary algorithms applied to indoor positioning
- Domingo Pérez, Francisco
- José Luis Lázaro Galilea Zuzendaria
- Ignacio Bravo Muñoz Zuzendarikidea
Defentsa unibertsitatea: Universidad de Alcalá
Fecha de defensa: 2016(e)ko azaroa-(a)k 10
- Felipe Espinosa Zapata Presidentea
- Cristina Losada Gutiérrez Idazkaria
- Francisco José Bellido Outeiriño Kidea
- Georgios Tsrigotis Kidea
- Antonio Ramón Jiménez Ruiz Kidea
Mota: Tesia
Laburpena
Esta tesis pretende contribuir a la mejora de la gestión de recursos en sistemas de sensores aplicados a localización en interiores. Mediante esta gestión pueden abordarse dos temas, la colocación de estos sensores y su uso óptimo una vez colocados, centrándose la tesis en el primero de ellos. Durante la tesis se considera el uso de un sistema de posicionamiento en interiores basado en señales infrarrojas con medida de diferencia de fase. Estas medidas de fase son posteriormente transformadas en distancias, con lo cual nuestro problema es el de trilateración hiperbólica utilizando medidas de diferencia de distancia. Aunque se describe un modelo para el error en diferencia de distancias del enlace infrarrojo, podemos abstraernos de este y simplemente considerar que utilizamos medidas de diferencia de distancia que están normalmente distribuidas con una varianza dada por el modelo usado. De hecho, el trabajo expuesto en esta tesis podría ser usado con cualquier otro sistema del cual obtengamos un modelo de los errores de medida, ya sea empleando además trilateración esférica o angulación. La gran mayoría de trabajos que mejoran la precisión de un sistema de posicionamiento colocando sensores optimizan funciones de coste basadas en el límite inferior de Cramér-Rao, enfoque que adoptamos también en este trabajo. En el capítulo de la tesis dedicado al estado del arte hacemos un repaso de las diferentes propuestas existentes, que concluye explicando qué pretendemos aportar sobre las contribuciones existentes en la literatura científica. En resumen, podemos clasificar las propuestas actuales en tres clases. La primera de ellas trata de determinar una configuración óptima para localizar un objetivo, normalmente utilizando el determinante de la matriz de información de Fisher o la dilución de la precisión. Estos métodos pueden obtener expresiones analíticas que proporcionan una explicación sobre como intervienen las características de los sensores y su colocación en la precisión obtenida. Sin embargo, carecen de aplicabilidad en situaciones reales. El segundo tipo de propuestas emplea me ¿todos numéricos para optimizar la colocación de sensores considerando varios objetivos o un área entera. Los métodos propuestos en esta tesis encajan dentro de esta categoría. Por último, existen métodos que utilizan técnicas de selección de sensores para obtener configuraciones óptimas. Entre las distintas propuestas encontramos varias deficiencias, como la simplificación del modelo de error de la medida para obtener expresiones fácilmente tratables, la consideración de un solo criterio de precisión de la localización, colocación de un número determinado y fijo de sensores, o su despliegue en áreas simples que no presenten problemas de oclusiones. Nuestra primera aportación trata de solucionar la consideración de un único criterio de pre- cisión, que normalmente es el determinante o la traza de la matriz de covarianza o información de la estimación. Cada métrica obtenida de estas matrices tiene un significado práctico distinto, y la consideración de solo una de ellas puede dar lugar a soluciones que presenten deficiencias en las otras, como la obtención de elipses de error muy alargadas. Nuestra propuesta implica el uso de algoritmos evolutivos multifunción que optimicen varias de estas métricas, como el error cuadrático medio en todo el área, la isotropía de la solución, y la máxima desviación que puede aparecer. Esto nos permite tener un conjunto de soluciones dadas en un frente de Pareto, que permitirán al gestor de la red de sensores visualizar las posibles soluciones y elegir entre ellas según las necesidades. También permite obtener colocaciones que mejoren la convergencia de algunos estimadores.