¿pueden las interfaces de usos del suelo explicar la ocurrencia de incendios forestales a escala provincial?

  1. Garrido Redondo, Jesús 1
  2. Vilar, Lara
  3. Echevarría, Pilar
  4. Martínez-Vega, Javier
  5. Martín, M. Pilar
  1. 1 Centro de Ciencias Humanas y Sociales (CCHS, CSIC)
Revista:
Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

ISSN: 1578-5157

Año de publicación: 2018

Número: 22

Tipo: Artículo

DOI: 10.21138/GF.611 DIALNET GOOGLE SCHOLAR lock_openDialnet editor

Otras publicaciones en: Geofocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica

Resumen

Los usos del suelo y su relación con factores socio-económicos son un aspecto clave en la gestión de incendios forestales. Este estudio analiza la ocurrencia de incendios forestales en el período 2005-2010 utilizando como variables explicativas las zonas de contacto entre usos del suelo (interfaces agrícola-forestal (IAF), urbano-forestal (IUF) y pasto-forestal (IPF)) por su relación con la ocurrencia de incendios en España, calculadas a partir de mapas de usos del suelo de Climate Change Initiative-Land Cover. Se utilizó Maxent para generar dos modelos predictivos (general y específico) en Zamora y Madrid. En el modelo general, la IAF contribuyó más en Zamora y la IUF en Madrid. El modelo específico mejoró los ajustes generales en ambas provincias, los porcentajes de acierto en Zamora y la discriminación espacial del riesgo, optimizando las potenciales actuaciones dirigidas a la prevención.

Referencias bibliográficas

  • Agencia Estatal de Meteorología, A.E.M.E.T. (2011): Atlas Climático Ibérico. Elaborado por el Departamento de Producción de AEMET y por el Departamento de Meteorología y Clima del Instituto de Meteorología de Portugal. Ministerio de Agricultura, Alimentación y Medio Ambiente. pp. 1-80.
  • Baldwin, R.B. (2009): Use of Maximum Entropy Modelling in Wildlife Research. Entropy, 11, pp. 854-866.
  • Bar Massada, A., Radeloff, V.C., Stewart, S.I.,Hawbaker, T.J. (2009): Wildfire risk in the wildland-urban interface: A simulation study in northwestern Wisconsin. Forest Ecology and Management, 258, pp. 1990-1999.
  • Bar Massada, A., Syphard, A.D., Stewart, S.I.,Radeloff, V.C. (2012): Wildfire ignition-distribution modelling: a comparative study in the Huron—Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 22, pp. 174-183.
  • Bond, W.J.,van Wilgen, B.W. (1996): Fire and Plants. Population and community biology series, 14, pp. 1-227.
  • Bowman, D.M., Balch, J., Artaxo, P., Bond, W.J., Cochrane, M.A., D'Antonio, C.M., Defries, R., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Mack, M., Moritz, M.A., Pyne, S., Roos, C.I., Scott, A.C., Sodhi, N.S., Swetnam, T.W.,Whittaker, R. (2011): The human dimension of fire regimes on Earth. Journal of Biogeography, 38(12), pp. 2223-2236.
  • Camarero, L. (1993): Del éxodo rural y del éxodo urbano. Ocaso y Renacimiento de los asentamientos rurales en España. Madrid: Ministerio de Agricultura, Pesca y Alimentación, pp. 1-524.
  • Cohen, J.D. (2000): Preventing disaster: home ignitability in the wildland-urban interface. Journal of Forestry, 98, pp. 15-21.
  • Comunidad de Madrid (2007): Atlas. El Medio Ambiente de la Comunidad de Madrid. http://www.madrid.org/bvirtual/BVCM003345.pdf (consultado 25-04-2018).
  • Castilla y León (2018). Consejería de Fomento y Medio Ambiente de Castilla y León. http://www.medioambiente.jcyl.es/ (consultado 25-04-2018).
  • Couturier, T., Besnard, A., Bertolero, A., Bosc, V., Astruc, G.,Cheylan, M. (2014): Factors determining the abundance and occurrence of Hermann’s tortoise Testudo hermanni in France and Spain: fire regime and landscape changes as the main drivers. Biological Conservation, 170, pp. 177-187.
  • Cubo, J.E., Enríquez, E., Gallar, J.J., López. M., Mateo, M.L., Muñoz, A.,Parra, P.J. (2012): Los Incendios Forestales en España. Decenio 2001-2010. Ministerio de Agricultura, Alimentación y Medio Ambiente, M.A.P.A.M.A., pp. 1-138.
  • Chou, Y.H., Minnich, R.A., Chase, R.A. (1993): Mapping probability of fire occurrence in San Jacinto Mountains, California, USA. Environmental Management, 17, pp. 129–140.
  • Chuvieco, E., Aguado, I., Yebra, M., Nieto, H., Salas, J., Martín, M.P., Vilar, L., Martínez, J., Martín, S., Ibarra, I., De La Riva, J., Baeza, J., Rodríguez, F., Molina, J.R., Herrera, M.A.,Zamora, R. (2010): Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 221, pp. 46-58.
  • Deblauwe, V., Barbier, N., Couteron, P., Lejeune, O.,Bogaert, J. (2008): The global biogeography of semi-arid periodic vegetation patterns. Global Ecology and Biogeography, 17(6), pp. 715-723.
  • Defourny, P., Santoro, M., Kirches, G., Wevers, J., Boettcher, M., Brockmann, C., Lamarche, C.,Bontemps, S. (2017): Land Cover CCI Product User Guide Version 2.0. UCL-Geomatics, Louvain-la-Neuve, Belgium, pp. 1-105.
  • Diputación de Zamora (2018). http://www.diputaciondezamora.es (consultado 25-04-2018).
  • Egan, J.P. (1975): Signal detection theory and ROC analysis. Series in Cognition and Perception. Academic Press, New York., pp. 1-277.
  • Elith, J., Graham, C.H., Anderson, R.P., Dudik, M., Ferrier, S., Guisan, A., Hijmans, R.J., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Loiselle, B.A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J.M., Peterson, A.T., Phillips, S.J., Richardson, K.S., Scachetti-Pereira, R., Schapire, R.E., Soberón, J., Williams, S., Wisz, M.S.,Zimmermann, N.E. (2006): Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), pp. 129-151.
  • Elith, J., Kearney, M.,Phillips, S. (2010): The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, pp. 330-342.
  • ESRI. (2014): Environmental System Research Institute (ESRI). ArcGIS Desktop Help 10.2. Geostatistical Analyst, Standfor, CA, USA.
  • Feng, C., Yongsheng, D., Shukui, N.,Jinlong, Z. (2015): Modeling Forest Lightning Fire Occurrence in the Daxinganling Mountains of Northeastern China with MAXENT. Forests, 6, pp. 1422-1438.
  • Gallardo, M., Gómez, I., Vilar, L., Martínez-Vega, J.,Martín, M.P. (2015): Impacts of future land use/land cover on wildfire occurrence in the Madrid region (Spain). Regional Environmental Change, 16(4), pp. 1047-1061.
  • Ganteaume, A., Camia, A., Jappiot, M., San-Miguel-Ayanz, J., Long-Fournel, M.,Lampin, C. (2013): A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environmental Management, 51, pp. 651-662.
  • Giovannini, A., Seglie, D.,Giacoma, C. (2014): Identifying priority areas for conservation of spadefoot toad, Pelobates fuscus insubricus using a maximum entropy approach. Biodiversity and Conservation, 23, pp. 1427-1439.
  • Guisan, A., Graham, C.H., Elith, J.,Huettmann, F. (2007): Sensitivity of predictive species distribution models to change in grain size. Diversity and Distributions, 13(3), pp. 332-340.
  • Gutiérrez, J.M., Bedia, J., Cofiño, A.S., Fernández, J.,San-Martín, D. (2013): Forest fires under climate, social and economic changes in Europe, the Mediterranean and other fire-affected areas of the world. European Project http://fumeproject.uclm.es/, pp. 1-32.
  • Hanley, J.,McNeil, B. (1982): The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143, pp. 29-36.
  • Hastie, T.J., Tibshirani, R.J.,Friedman, J. (2009): The elements of statistical learning. Dordrecht, editor: Springer, pp. 1-763.
  • INE (2018): INEbase. Estadísticas territoriales. http://www.ine.es/FichasWeb/RegProvincias.do (consultado 25-04-2018).
  • Lampin-Maillet, C., Long-Fournel, M., Ganteaume, A., Jappiot, M.,Ferrier, J.P. (2011): Land cover analysis in wildland—urban interfaces according to wildfire risk: A case study in the South of France. Forest Ecology and Management, 261(12), pp. 2200-2213.
  • Leone, V., Koutsias, N., Martínez, J., Vega-García, C., Allgöwer, B.,Lovreglio, R. (2003): The Human Factor in Fire Danger Assessment. In: Chuvieco, E., editor. Wildland Fire Danger Estimation and Mapping The Role of Remote Sensing Data. Singapore: World Scientific Publishing., 4, pp. 143-194.
  • Martínez, J., Vega-García, C.,Chuvieco, E. (2009): Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 90(2), pp. 1241-1252.
  • Maxent. Biodiversity Informatics. American Museum of Natural History. https://biodiversityinformatics.amnh.org/open_source/maxent/ (consultado 25-04-2018)
  • Millington, J.D.A., Wainwright, J., Perry, G.L.W., Romero-Calcerrada, R.,Malamud, B.D. (2009): Modelling Mediterranean landscape succession-disturbance dynamics: A landscape fire-succession model. Environmental Modelling & Software, 24(10), pp. 1196-1208.
  • Nafría, D.A., Garrido, N., Álvarez, M.V., Cubero, D., Fernández, M., Villarino, I., Gutiérrez, A.,Abia, I. (2013): Atlas Agroclimático de Castilla y León. Junta de Castilla y León. Instituto Tecnológico Agrario de Castilla y León. Ministerio de Agricultura, Alimentación y Medio Ambiente., pp. 1-137.
  • National Interagency Fire Center, N.I.F.C. (2004): Wildland fire statistics.
  • Nelder, J.A.,Wedderburn, R.W.M. (1972): Generalized Linear Models. Journal of the Royal Statistical Society. Series A (General), 135(3), pp. 370-384.
  • Nicolás, J.M.,Caballero, D. (2001): Demanda territorial de defensa contra incendios forestales. Un caso de estudio: Comunidad de Madrid. Proceedings of Spanish National Forest Congress. Granada 2001, pp. 1-16.
  • Oliveira, S., Oehler, F., San-Miguel-Ayanz, J., Camia, A.,Pereira, J.M.C. (2012): Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, 275(0), pp. 117-129.
  • Padilla, M.,Vega-García, C. (2011): On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. International Journal of Wildland Fire, 20, pp. 46-58.
  • Parisien, M.A.,Moritz, M.A. (2009): Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79, pp. 127-154.
  • Parisien, M.A., Snetsinger, S., Greenberg, J.A., Nelson, C.R., Schoennagel, T., Dobrowski, S.Z.,Moritz, M.A. (2012): Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 21, pp. 313-327.
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M.,Peterson, A.T. (2007): Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34(1), pp. 102-117.
  • Pena, J.C.C., Kamino, L.H.Y., Rodrigues, M., Mariano-Neto, E.,Siqueira, M.F. (2014): Assessing the conservation status of species with limited available data and disjunct distribution. Biological Conservation, 170, pp. 130-136.
  • Pérez-Cabello, F., Echevarría, M.T., Ibarra, P.,de la Riva, J. (2009): Effects of Fire on Vegetation, Soil and Hydrogeomorphological Behaviour in Mediterranean Ecosystems. In: Chuvieco E, editor. Earth Observation of Wildland Fires in Mediterranean Ecosystems., pp. 111-128.
  • Phillips, S.J., Anderson, R.P.,Schapire, R.E. (2006): Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, pp. 231-259.
  • Phillips, S.J., Dudik, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J.,Ferrier, S. (2009): Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19(1), pp. 187-197.
  • Phillips, S.J., Dudik, M.,Schapire, R.E. (2004): A Maximum Entropy Approach to Species Distribution Modeling. Proceedings of the Twenty-First International Conference on Machine Learning, pp. 655-662.
  • Radeloff, V.C., Hammer, R.B., Stewart, S.I., Fried, J.S., Holcomb, S.S.,McKeefry, J.F. (2005): The Wildland-Urban Interface in the United States. Ecological Applications, 15(3), pp. 799-805.
  • Renard, Q., Pélissier, R., Ramesh, B.R.,Kodandapani, N. (2012): Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21, pp. 368-379.
  • Rodrigues, M., de la Riva, J.,Fotheringham, S. (2014): Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Applied Geography, 48, pp. 52-63.
  • Rodríguez-Rodríguez, D., Martínez-Vega, J. (2017). Assessing recent environmental sustainability in the Spanish network of National Parks and their statutory peripheral areas. Applied Geography, 89, pp. 22-31.
  • Romero-Calcerrada, R., Novillo, C.J., Millington, J.D.A.,Gómez-Jiménez, I. (2008): GIS analysis of spatial patterns of human-caused wildfire ignition risk in the SW of Madrid (Central Spain). Landscape Ecology, 23, pp. 341-354.
  • Romero-Calcerrada, R.,Perry, G.L.W. (2004): The role of land abandonment in landscape dynamics in the SPA 'Encinares del río Alberche y Cofio, Central Spain, 1984-1999. Landscape and Urban Planning, 66, pp. 217-232.
  • Spessa, A., McBeth, B.,Prentice, C. (2005): Relationships among fire frequency, rainfall and vegetation patterns in the wet-dry tropics of northern Australia: an analysis based on NOAA-AVHRR data. Global Ecology and Biogeography, 14, pp. 439-454.
  • Sturtevant, B.R.,Cleland, D.T. (2007): Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. International Journal of Wildland Fire, 16, pp. 398-413.
  • Syphard, A.D., Radeloff, V.C., Keeley, J.E., Hawbaker, T.J., Clayton, M.K., Stewart, S.I.,Hammer, R.B. (2007): Human influence in California Fire regimes. Ecological Applications, 17(5), pp. 1388-1402.
  • Syphard, A.D., Radeloff, V.C., Keuler, N.S., Taylor, R.S., Hawbaker, T.J., Stewart, S.I.,Clayton, M.K. (2008): Predicting spatial patterns of fire on a southern California landscape. International Journal of Wildland Fire, 17, pp. 602-613.
  • van der Werf, G.R., Randerson, J.T., Collatz, G.J.,Giglio, L. (2003): Carbon emissions from fires in tropical and subtropical ecosystems. Global Change Biology, 9, pp. 547-562.
  • Vilar, L., Gómez, I., Martínez-Vega, J., Echavarría, P., Riaño, D.,Martín, M.P. (2016): Multitemporal Modelling of Socio-Economic Wildfire Drivers in Central Spain between the 1980s and the 2000s: Comparing Generalized Linear Models to Machine Learning Algorithms. PLoS ONE, 11(8), pp. 1-17.
  • Vilar, L., Martín, M.P.,Martínez, F.J. (2008): Empleo de técnicas de regresión logística para la obtención de modelos de riesgo humano de incendio forestal a escala regional. Boletín de la AGE, 47, pp. 5-29.
  • Vilar, L., Martín, M.P.,Martínez, F.J. (2011): Logistic regression models for human-caused wildfire risk estimation: analysing the effect of the spatial accuracy in fire occurrence data. European Journal of Forest Research, 130, pp. 983-996.
  • Vilar, L., Woolford, D.G., Martell, D.L.,Martín, M.P. (2010): A model for predicting human-caused wildfire occurrence in the region of Madrid, Spain. International Journal of Wildland Fire, 19, pp. 325-337.
  • Winter, G.J.,Fried, S.J. (2001): Estimating contingent values for protection from wildland fire using a two-stage decision framework. Forest Science, 47(3), pp. 349-360.
  • Zadrozny, B. (2004): Learning and evaluating classifiers under sample selection bias. Proceedings of the twenty-first international conference on Machine learning. Banff, Alberta, Canada. 1015425: ACM., pp. 114.