Transdisciplinary integration and its implementation in primary education through two STEAM projects

  1. Lage-Gómez, Carlos 1
  2. Ros, Germán 2
  1. 1 Universidad Complutense de Madrid

    Universidad Complutense de Madrid

    Madrid, España

    ROR 02p0gd045

  2. 2 Universidad de Alcalá

    Universidad de Alcalá

    Alcalá de Henares, España


Journal for the Study of Education and Development, Infancia y Aprendizaje

ISSN: 0210-3702 1578-4126

Year of publication: 2021

Issue Title: STEAM education: Contributing evidence of validity and effectiveness / Educación STEAM: Aportando pruebas de validez y efectividad

Volume: 44

Issue: 4

Pages: 801-837

Type: Article

DOI: 10.1080/02103702.2021.1925474 DIALNET GOOGLE SCHOLAR

More publications in: Journal for the Study of Education and Development, Infancia y Aprendizaje

Sustainable development goals


Curriculum integration from a STEAM transdisciplinary perspective represents a profound challenge. This study delves into a transdisciplinary approach to primary education and the role of the arts through two STEAM projects in a programme for gifted students in Madrid (Spain). Participants include 111 students from eight groups (11–12 years old), five teachers and four external professionals. The teachers fulfill the dual role of both teacher and researcher, using participant and non-participant observation, video recordings, interviews and classroom journals and questionnaires. All the findings have been triangulated and coded by means of Activity Theory, using Atlas.ti8 software and statistical analysis. The results show the significance of learning and the creation of meaningful experiences as being related to a high degree of motivation and satisfaction, and to the integration of diverse areas in a participatory process in which the arts play a disciplinary and integrating role. A transdisciplinary STEAM approach is presented that could be paradigmatic for the field of primary education.

Bibliographic References

  • Aróstegui, J. L. (2020). Implications of neoliberalism and knowledge economy for music education. Music Education Research, 22(1), 42–53. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Bautista, A., Tan, L. S., Ponnusamy, L. D., & Yau, X. (2016). Curriculum integration in arts education: Connecting multiple art forms through the idea of ‘space’. Journal of Curriculum Studies, 48(5), 610–629. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Burger, P., & Kamber, R. (2003). Cognitive integration in transdisciplinary science. Issues in Integrative Studies, 21, 43–73. [Google Scholar]
  • Burnard, P., & Colucci-Gray, L. (2020). Why science and art creativities matter. (Re- configuring STEAM for future-making education). Brill/Sense Publishers. [Crossref], [Google Scholar]
  • Chalmers, C., Carter, M. L., Cooper, T., & Nason, R. (2017). Implementing “big ideas” to advance the teaching and learning of science, technology, engineering, and mathematics (STEM). International Journal of Science and Mathematics Education, 15(1), 25–43. [Crossref], [Google Scholar]
  • Chapell, K., Hetherington, L., Keene, H. R., Wren, H., Alexopoulos, A., Ben-Horin, O., Nikolopoulos, K., Robberstad, J., Sotiriou, S., & Bogner, F. X. (2019). Dialogue and materiality/embodiment in science|arts creative pedagogy: Their role and manifestation. Thinking Skills and Creativity, 31, 296–322. [Web of Science ®], [Google Scholar]
  • Clapp, E. P., & Jimenez, R. L. (2016). Implementing STEAM in maker-centered learning. Psychology of Aesthetics, Creativity, and the Arts, 10(4), 481. [Crossref], [Web of Science ®], [Google Scholar]
  • Cochran-Smith, M., & Litle, S. L. (2009). Inquiry as stance: Practitioner research for the next generation. Teachers College Press. [Google Scholar]
  • Colucci-Gray, L., Burnard, P., Gray, D., & Cooke, C. (2019, May). A critical review of STEAM (Science, technology, engineering, arts, and mathematics). Oxford Research Encyclopedia of Education, 1–26. [Google Scholar]
  • Costantino, T. (2018). STEAM by another name: Transdisciplinary practice in art and design education. Arts Education Policy Review, 119(2), 100–106. [Taylor & Francis Online], [Google Scholar]
  • Elliott, J. (2009). Building educational theory through action research. In S. E. Noffke, & B. Somekh (Eds.), The SAGE handbook of educational action research (pp. 28–38). SAGE. [Crossref], [Google Scholar]
  • Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. Engestrom, R. Miettinen, & R. L. Punamaki (Eds.), Perspectives on activity theory (pp. 19–38). Cambridge University Press. [Crossref], [Google Scholar]
  • Escobar Pérez, J., & Cuervo Martínez, A. (2008). Validez de contenido y juicio de expertos: una aproximación a su utilización. Avances en Medición, 6(1), 27–36. [Google Scholar]
  • Etim, J. S. (Ed.). (2005). Curriculum integration K-12: Theory and practice. University Press of America. [Google Scholar]
  • Friese, S. (2013). ATLAS.ti 7: User guide and reference. ATLAS.ti Scientific Software Development GmbH. [Google Scholar]
  • Ge, X., Ifenthaler, D., & Spector, J. (2015). Emerging technologies for STEAM education: Full STEAM ahead. Springer. [Crossref], [Google Scholar]
  • Harris, A., & de Bruin, L. R. (2018). Secondary school creativity, teacher practice and STEAM education: An international study. Journal of Educationial Change, 19(2), 153–179. [Crossref], [Web of Science ®], [Google Scholar]
  • Henrkisen, D., DeSchryver, M., & Mishra, P. (2015). Rethinking technology & creativity in the 21st century transform and transcend: Synthesis as a trans-disciplinary approach to thinking and learning. TechTrends, 59(4), 5. [Crossref], [Web of Science ®], [Google Scholar]
  • Herro, D., & Quigley, C. (2016). STEAM enacted: A case study of a middle school teacher implementing STEAM instructional practices. Journal of Computers in Mathematics and Science Teaching, 35(4), 319–342. [Google Scholar]
  • Hirsch Hadorn, G., Hoffmann-Riem, H., Biber-Klemm, S., Grossenbacher-Mansuy, W., Joye, D., Pohl, C., Wiesmann, U., & Zemp, E. (Eds.). (2007). Handbook of transdisciplinary research. Springer. [Google Scholar]
  • Kemmis, S. (2010). Research for praxis: Knowing doing. Pedagogy Culture & Society, 18(1), 9–27. [Taylor & Francis Online], [Google Scholar]
  • Khine, M. S., & Areepattamannil, S. (2019). STEAM education: Theory and practice. Springer. [Crossref], [Google Scholar]
  • Klein, J. T., Grossenbacher-Mansuy, W., Häberli, R., Bill, A., Scholz, R. W., & Welti, M. (2001). Transdisciplinarity: Joint problem solving among science. An effective way for managing complexity. Birkhäuser Verlag. [Crossref], [Google Scholar]
  • Loewenthal, K. M., & Lewis, C. A. (2018). An introduction to psychological tests and scales. Psychology press. [Crossref], [Google Scholar]
  • Marshall, J. (2014). Transdisciplinarity and art integration: Toward a new understanding of art-based learning across the curriculum. Studies in Art Education, 55(2), 104–127. [Taylor & Francis Online], [Google Scholar]
  • Nicolescu, B. (2012). Transdisciplinarity: The hidden third, between the subject and the object. Human and Social Studies, 1(2), 13–28. [Google Scholar]
  • Niemi, D., Vallone, J., & Vendlinski, T. (2006). The power of big ideas in mathematics education: Development and pilot testing of POWERSOURCE assessments (CSE Report 697). National Center for Research on Evaluation, Standards, and Student Testing (CRESST). [Google Scholar]
  • Park, J., & Son, J. (2010). Transitioning toward transdisciplinary learning in a multidisciplianary environment. International Journal of Pedagogies and Learning, 6(1), 82–93. [Taylor & Francis Online], [Google Scholar]
  • Perignat, E., & Katz-Buonincontro, J. (2019). STEAM in practice and research: An integrative literature review. Thinking Skills and Creativity, 31, 31–43. [Crossref], [Web of Science ®], [Google Scholar]
  • R Core Team. (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Google Scholar]
  • Rice, P., & Ezzy, D. (1999). Qualitative research methods: A health focus. Oxford University Press. [Google Scholar]
  • Torres Santomé, J. (1994). Globalización e interdisciplinariedad: el currículum integrado. Ediciones Morata. [Google Scholar]
  • Wenger, E. (2002). Comunidades de práctica. Ediciones Paidós Ibérica. [Google Scholar]